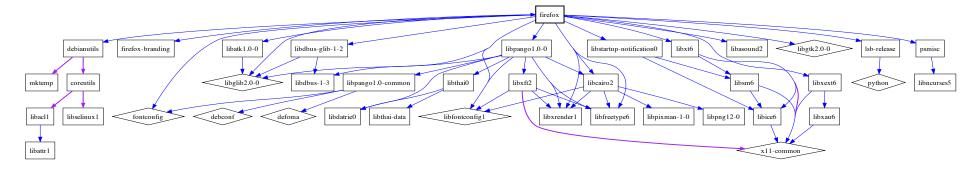
SPADE: A retrospective

Ashish Gehani, SRI

Background

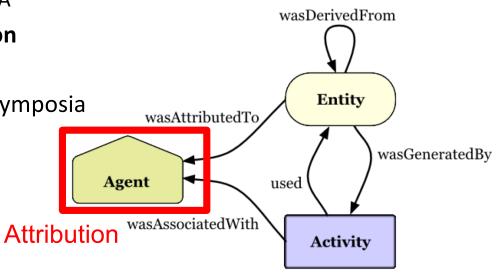
- Pre-20th century:
 - Experimental science
 - Hypotheses derived from experience
 - Physical phenomena measured
 - Steps and data recorded by hand
 - Theoretical science
 - Mathematical models
 - Conjectures based on analysis
 - Results derived by hand
- Late 20th century:
 - Computational science
 - Commoditization of sensors
 - Large volumes of data
 - Analyses involve significant computation
 - Hypotheses emerge from data exploration

Credit: commons.wikimedia.org



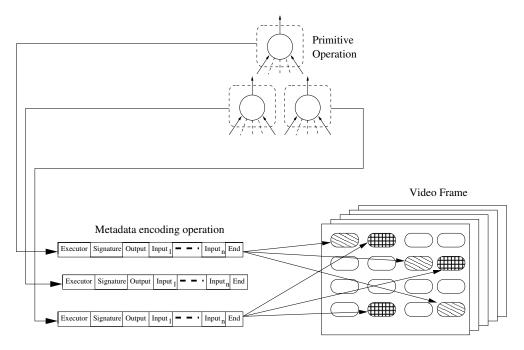
Credit: commons.wikimedia.org

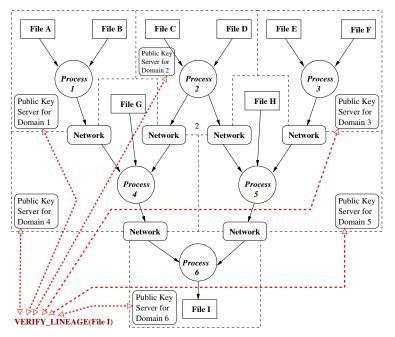
Motivation


- Application context is complex
- Code dependencies
 - Linked libraries
 - System services
 - Utility programs

- Environmental dependencies
 - Shell variables
 - Shared memory contents
- Changes in any can affect output

Data Annotation and Provenance

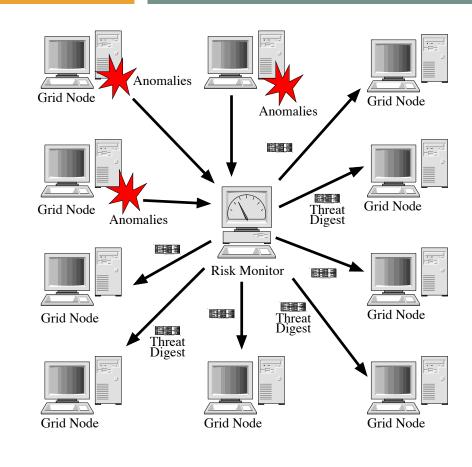

- Initial meetings:
 - 2002 : Data Derivation and Provenance
 - Argonne National Laboratory, Chicago, USA
 - 2003 : Data Provenance and Annotation
 - e-Science Institute, Edinburgh, UK
 - 2008-9 : Principles of Provenance 6 symposia
 - e-Science Institute, Edinburgh, UK
 - 2012 : Principles of Provenance
 - Dagstuhl, Germany
- Emerging specifications:
 - 2007, 2011 : Open Provenance Model (versions 1.0, 1.1)
 - 2013 : W3C PROV standard
 - 2015-2019: DARPA Transparent Computing Common Data Model (versions 1-20)
- Ongoing event series:
 - 2006- : Biennial International Provenance and Annotation Workshop
 - 2009- : Annual USENIX Theory and Practice of Provenance
 - 2014- : Biennial ProvenanceWeek co-located events

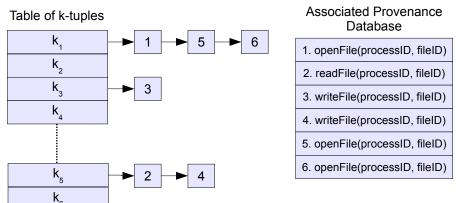


Credit: www.w3.org/TR/prov-primer/

Precursors (1/2)

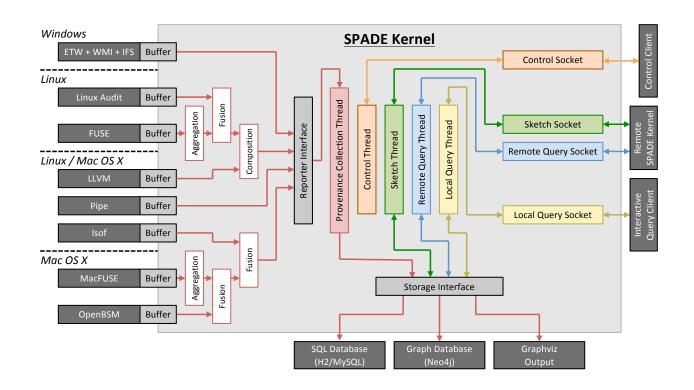
- Application-specific provenance
- Tracking authorship of video mashups
- Custom data model, schema
- In-band encoding of metadata
- VEIL: A System for Certifying Video
 Provenance, IEEE Symposium on
 Multimedia, 2007





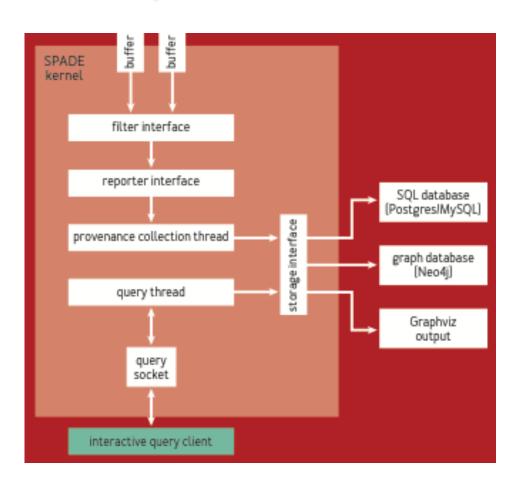
- Initial distributed provenance effort
- Decoupled metadata from source
- Bonsai: Balanced Lineage
 Authentication, Annual Computer Security
 Applications Conference, 2007
- Tracking and Sketching Distributed Data
 Provenance, IEEE Conference on e-Science,
 2010
- Mendel: Efficiently Verifying the Lineage of Data Modified in Multiple Trust Domains, ACM Symposium on High Performance Distributed Computing, 2010

Precursors (2/2)


- Early focus on cluster / Grid environments
- Influenced by DARPA Application
 Communities program
- Relating anomalies to provenance
- Steps Toward Managing Lineage
 Metadata in Grid Clusters, USENIX
 Theory and Practice of Provenance, 2009
- Fine-Grained Tracking of Grid Infections, ACM/IEEE Conference on Grid Computing, 2010
- Identifying the Provenance of Correlated Anomalies, ACM Symposium on Applied Computing, 2011

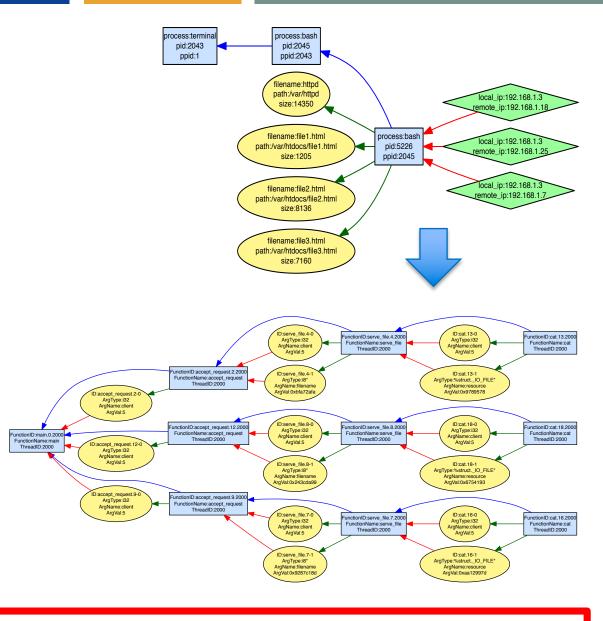
SPADE (version 2)

- Motivated by development, deployment experiences
- Re-architected, re-implemented to accommodate:
 - Diverse domains
 - Evolving attributes
 - Variable granularity
 - Component decoupling


• SPADE: Support for Provenance Auditing in Distributed Environments, ACM/IFIP/USENIX Conference on Middleware, 2012

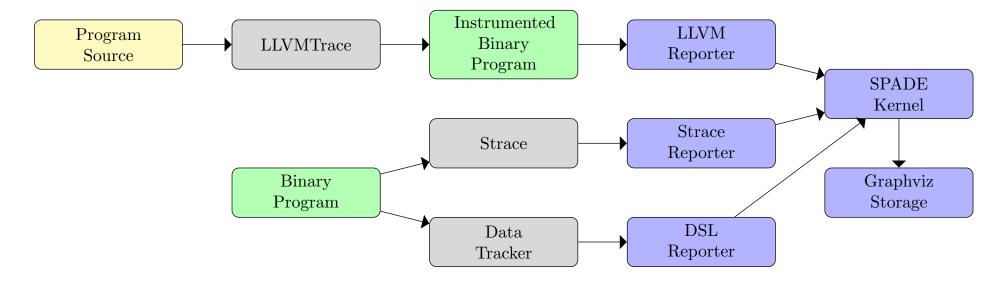
New Domain Workflow

- Study application
- Identify significant agents, activities, entities
- Build causal model that relates elements
- Create / configure instrumentation
- Develop a SPADE Reporter to:
 - Ingest event stream
 - Infer provenance
 - Emit property graph elements



Looking Inside

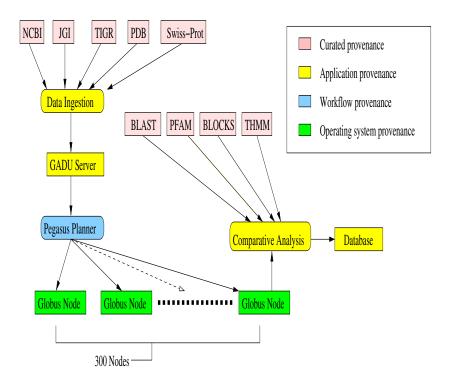
- Dependency conflation arises when:
 - Instrumentation is at coarser level of abstraction
 - Causality manifests at finer granularity
- Compiler


 instrumentation
 supports intra-process
 observation

Multiple abstraction levels

Towards Automated Collection of Application-Level Data Provenance, *USENIX Theory and Practice of Provenance*, 2012

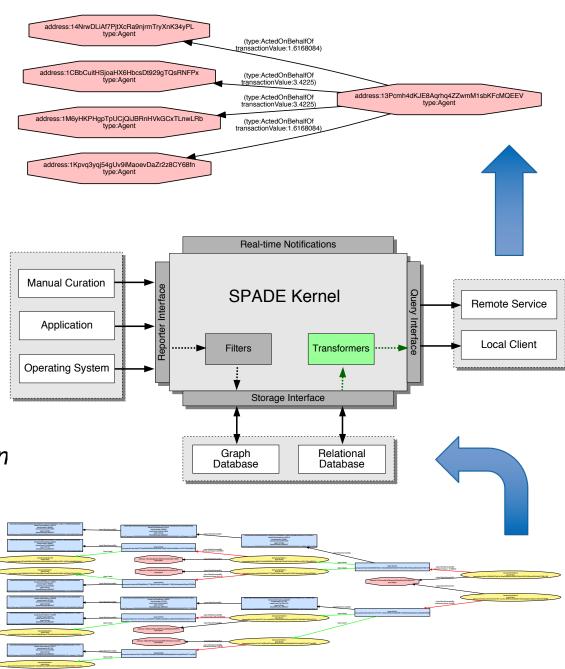
Comparing Approaches



Tradeoffs in
 Automatic
 Provenance
 Capture,
 International
 Provenance and
 Annotation
 Workshop, 2016

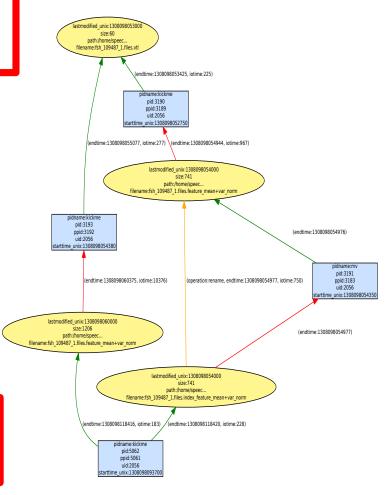
	system call analysis	static, compile-time instrumentation	dynamic, instruction-level instrumentation
integration effort	easy	medium	easy
prov. granularity ⁶	file-level	function-level	byte-level
analysis scope	process and children	process, no dyn. lib.	process and children
false positives	many	depends on configured scope	negligible, tracks use of individual bytes
execution overhead	depends on the size of program I/O	depends on the number of function calls	high, depends on the taint tag type used
Reporter	strace reporter	LLVMTrace	DataTracker

<u>Integrating Provenance</u>


- Merging streams with filters
 - Aggregation (in time)
 - Fusion (of complementary sources)
 - Composition (from different layers)
- Policy-based integration
 - Facilitates what-if analysis
- For graph abstraction
 - Integration constraints
 - Account for influence of agents on activities, entities
 - Attribution fidelity controlled by:
 - Threshold of matching
 - Trust tolerance

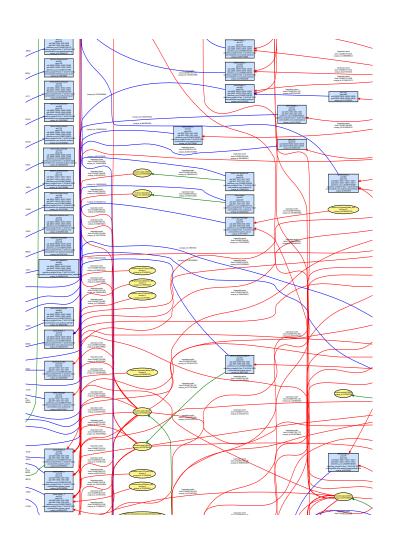
- Policy-Based Integration of Provenance Metadata, IEEE Symposium on Policies for Distributed Systems and Networks, 2011
- Provenance-Only Integration, USENIX Theory and Practice of Provenance, 2014

Scaling


- "Big Provenance":
 - Bitcoin blockchain
 - Audit logs
- Transformers
 - Limit abstraction scope
 - Operate at query time
 - Dynamic graph rewrite
- Scaling SPADE to "Big Provenance", USENIX Theory an Practice of Provenance, 2016
- Streaming Provenance
 Compression, Lecture Notes in Stream Computer Science, Vol. 11017,
 Springer, 2018

Querying

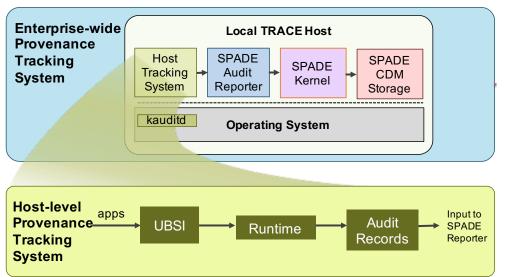
Intuitionistic logic

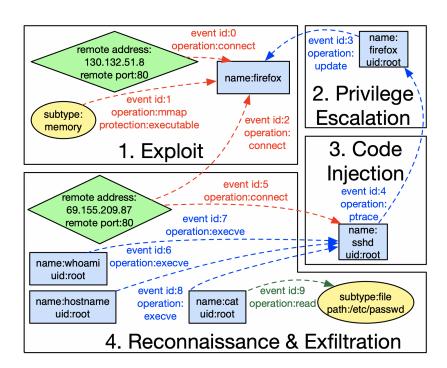

- System Support for Forensic
 Inference, Advances in Digital Forensics V, 2009
- Efficient Querying of Distributed Provenance Stores, Challenges of Large Applications in Distributed Environments, 2010
- Declaratively Processing Provenance
 Metadata, USENIX Theory and Practice of Provenance, 2013
- ProvMark: A Provenance Expressiveness
 Benchmarking System, ACM/IFIP Middleware
 Conference, 2019
- Digging Into "Big Provenance" (With SPADE), Communications of the ACM, Vol. 64(12), 2021

Rich query surface (supports faceted search, set operations, aggregate statistics on big data)

Diagnostics

- Android Provenance: Diagnosing
 Device Disorders, USENIX Theory and
 Practice of Provenance, 2013
- Discrepancy Detection in Whole Network Provenance, USENIX Theory and Practice of Provenance, 2020
- Clarion: Sound and Clear Provenance
 Tracking for Microservice
 Deployments, USENIX Security
 Symposium, 2021




Security

- Using Provenance Patterns to Vet
 Sensitive Behaviors in Android Apps,
 Conference on Security and Privacy in
 Communication Networks, 2015
- Mining Data Provenance to Detect
 Advanced Persistent Threats, USENIX
 Theory and Practice of Provenance, 2019

Partial observability (facilitates scaling)

- TRACE: Enterprise-Wide Provenance
 Tracking For Real-Time APT
 Detection, IEEE Transactions on
 Information Forensics and Security, 2021
- PACED: Provenance-based Automated Container Escape Detection, 10th IEEE International Conference on Cloud Engineering, 2022

<u>Impact</u>

- Research Infrastructure
 - Competing concerns (community use / design iteration)
 - 100+ GitHub stars / 60+ forks
 - Anecdotal: Used in software build / staging
- Academic
 - 250+ citations
 - Anecdotal: Used to create other systems
- Datasets
 - Provenance Benchmark Challenge
 - DARPA Transparent Computing Adversarial Engagements (3 & 5)
- Industry
 - Streamlined + extended version licensed to AccuKnox (container security company)