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Background
• Pre-20th century:

– Experimental science
• Hypotheses derived from experience
• Physical phenomena measured
• Steps and data recorded by hand

– Theoretical science
• Mathematical models
• Conjectures based on analysis
• Results derived by hand

• Late 20th century:
– Computational science

• Commoditization of sensors
• Large volumes of data
• Analyses involve significant computation
• Hypotheses emerge from data exploration

Credit: commons.wikimedia.org
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Motivation
• Application context is complex
• Code dependencies
– Linked libraries
– System services
–Utility programs

• Environmental dependencies
– Shell variables
– Shared memory contents
• Changes in any can affect output

between the C library and the kernel can vary between different versions of the same operating system.
All of these concerns can be avoided by packaging the scientific application along with all its dependen-

cies, including the operating system that it was developed on, into a virtual machine image. This strategy
is feasible because most commodity desktop and laptop operating systems, such as Microsoft’s Windows,
Apple’s Mac OS X, and Linux, run on x86 hardware, and the fact that high performance virtual machines
for the Intel x86 instruction set are now widely available. For example, Oracle’s VirtualBox [56] is freely
available under the GNU Public License, and runs on Windows, OS X, Linux, and Solaris.

2.1 Challenge: Distribution Bloat

A problem with the baseline virtual machine approach is the high storage overhead it imposes. This is easily
illustrated by an example. Consider a scientist that has developed a tool that consists of a set of Javascript-
enabled Web pages that can be run in a browser. Rather than testing the Web pages with a range of different
browsers on a number of operating systems, they decide to package the Web pages and a single browser that
runs them correctly into a virtual machine that they will distribute. In our example, the browser is Firefox
on Linux.

To minimize the virtual machine image size, a minimal Linux distribution can be used. Note that a
complete modern Linux distribution would require multiple gigabytes of virtual disk storage. Instead, the
open source TurnKey [54] project, which is designed to facilitate the creation of “virtual appliances” is
utilized. The scientist can start with Core [7], the smallest Linux install available at TurnKey. It is meant
to serve as the basis for creating custom appliances. Although the CD for Core is only 117 MB, installing
the distribution uses 645 MB of virtual storage. If the packages are updated, the virtual disk spaced used
increases to 701 MB. Installing Firefox and its dependencies results in a total of 788 MB virtual disk storage
used.

The size of an exported virtual machine that can be used by others is close to the size of the virtual disk.
(Lossless compression did not significantly reduce the size of the image.) We conjectured that many of the
packages installed were not strictly necessary for running Firefox. Removing them would reduce the amount
of virtual disk space used. To test this hypothesis we developed a Dependency Analyzer that operates on
the package metadata extracted from the target virtual machine. The tool recursively analyzes the package
dependencies of the target application, as illustrated for Firefox in Figure 1.
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Figure 1: This illustrates the immediate package dependencies of Firefox. The complete dependency graph
of a minimal system install with Firefox contains 32,076 vertices. Each vertex represents a package (though
some are uninstalled alternatives to installed ones).

Dependency Analyzer outputs lists of packages that need to be retained, those that can be removed, and
information about the storage needed for each package to guide the process of deciding which alternatives
should be retained or removed. A seed set of system initialization packages that must be retained is also
identified to ensure that the resulting system can be booted and run.

Applying the tool to the virtual machine image of the minimal installation with Firefox, we found that
we could remove 88 packages but needed to retain another 178. The removed packages resulted in a virtual
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Data Annotation and Provenance

• Initial meetings:

– 2002 : Data Derivation and Provenance
§ Argonne National Laboratory, Chicago, USA

– 2003 : Data Provenance and Annotation
§ e-Science Institute, Edinburgh, UK

– 2008-9 : Principles of Provenance – 6 symposia

§ e-Science Institute, Edinburgh, UK

– 2012 : Principles of Provenance
§ Dagstuhl, Germany 

• Emerging specifications:

– 2007, 2011 : Open Provenance Model (versions 1.0, 1.1)

– 2013 : W3C PROV standard

– 2015-2019 : DARPA Transparent Computing Common Data Model (versions 1-20)

• Ongoing event series:

– 2006- : Biennial International Provenance and Annotation Workshop
– 2009- : Annual USENIX Theory and Practice of Provenance
– 2014- : Biennial ProvenanceWeek co-located events

Credit: www.w3.org/TR/prov-primer/

Attribution
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Precursors (1/2)
• Application-specific provenance
• Tracking authorship of video mashups
• Custom data model, schema
• In-band encoding of metadata
• VEIL: A System for Certifying Video 

Provenance, IEEE Symposium on 
Multimedia, 2007

Metadata encoding operation

 1Signature Output EndInput nExecutor

Input 1Signature Output EndInput nExecutor

Input 1Signature Output EndInput nExecutor

Primitive

Operation

Video Frame

Input

Figure 6. Each primitive operation is represented by a metadata element (of the format shown in
Figure 4). The lineage consists of a set of such elements, each of which is then redundantly encoded
in the frames of the video.

6. VEIL’s capacity is parameterized. The parameter that
controls this is α and must be decided prior to embed-
ding.

As α increases, the amount of information that VEIL
will attempt to embed in a fixed length of video will in-
crease exponentially. However, the “lossy” operations
of transforming to the signal domain and quantization
occur after the metadata is embedded. This means that
as α increases, there is a higher probability that the
encoded metadata will be destroyed by the “lossy” op-
erations. Thus, the smallest value of α that provides
sufficient capacity is selected. This is done as follows.

(a) A reliability factor ρ is selected. This represents
the number of times the lineage will be redun-
dantly inserted into the video object.

(b) α = ! τ.ρ.β
λ " since τ.ρ bits must be encoded in λ

β

blocks, each with an encoding capacity of α bits.

7. ρ copies of T̂ are made. Each one is independently
randomly permuted. These are then concatenated into
a single string, Σ. This is the redundant representation
of the lineage tree that will be embedded into the video
object, as illustrated in Figure 6. The random permu-
tation decreases the probability that all ρ copies of any
element will be unreadable after “lossy” compression.

8. Σ is divided into groups of α bits. Each is treated as a
number in the range from 0 to 2α − 1. This is normal-
ized (with a denominator of 2α) to obtain a value, δx,
in the range of 0 to 1. Σ is thus converted into a stream
of δx values.

9. The ith δx value is encoded by interpolating the ith

block (of all the P and B frames). Interpolation is
detailed in Section 4.3.

10. The last α blocks are encoded with δx = 1
2α . The

decoder needs this value to know how much to scale
the values to invert the normalization.

11. A signature is computed over all the data in the mod-
ified video object except for the blocks where H is to
be encoded. Unlike S in Section 3.4 (which is com-
puted over object identifiers), H is computed over the
object’s content. The blocks where H is to be encoded
are interpolated to embed the signature’s bits. The sig-
nature binds the lineage tree to the specific video ob-
ject.

The security of H is guaranteed through circularity.
The blocks in which the signature is encoded are not
part of the input to the signature. If they change, the
output of the signature will not be altered. However,
this will cause the recorded output of the signature to
change. On the other hand, if the blocks used to encode
H are changed, the verification will fail.

The actual signature scheme used for H depends
on the level of security required. Geometric hashes
[28] provide the weakest attestation while tolerating
the most types of editing operations. Cryptographic
hashes are the most sensitive to changes in the object,
providing the strongest integrity assurance but no tol-
erance for video editing operations. Perceptual hashes
[18] strike a balance, yielding the same hash after ac-
ceptable transformations.

• Initial distributed provenance effort
• Decoupled metadata from source
• Bonsai: Balanced Lineage 

Authentication, Annual Computer Security 
Applications Conference, 2007

• Tracking and Sketching Distributed Data 
Provenance, IEEE Conference on e-Science, 
2010

• Mendel: Efficiently Verifying the Lineage of 
Data Modified in Multiple Trust Domains, ACM 
Symposium on High Performance Distributed 
Computing, 2010

SPADEv1 [HPDC’10]

Multiple trust domains
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Precursors (2/2)

• Early focus on cluster / Grid 
environments

• Influenced by DARPA Application 
Communities program

• Relating anomalies to provenance

• Steps Toward Managing Lineage 
Metadata in Grid Clusters, USENIX 
Theory and Practice of Provenance, 2009

• Fine-Grained Tracking of Grid 
Infections, ACM/IEEE Conference on Grid 
Computing, 2010

• Identifying the Provenance of 
Correlated Anomalies, ACM Symposium 
on Applied Computing, 2011

egress filters deployed by Internet service providers to curtail
spam originating from their customers’ infected computers,
and the dearth of intervening institutional firewalls make such
Grid nodes particularly suitable for use by attackers.

E. Significant consequences

Data emitted from a Grid is usually the product of a
significant amount of time and computational resources. For
example, each piece of information that physicists use from
Fermilab’s Collider Detector is the output of a month of
processing dozens of terabytes of raw data [40]. Similarly, the
cost to analyze a single protein stored in the Protein Data Bank
is $200,000 [35]. The cost of producing such data precludes
its availability from an alternate source. Consequently, there is
substantial adverse economic impact if large amounts of data
in a Grid must be discarded because of anomalous activity.
Minimizing this requires the ability to hone in on which
information has been tainted.

F. Unreported incidents

Grid middleware, such as the Globus toolkit [15], is com-
posed of code that is meant to be reused for many years.
Further, it is distributed to the public and utilized by many
users. Consequently, when a vulnerability in the code is
discovered, in addition to addressing it, knowledge about
the weakness is shared. Hence, external agencies that track
security vulnerabilities and exploits are made aware of it and
sources such as NIST’s ICAT database [23] have a record
of the issue. In contrast, application code (that executes on
a Grid) is viewed as internal to the group developing it.
When vulnerabilities are found, they may be addressed but not
reported to external agencies. Thus, tallying known exploits for
Grid application code using the ICAT or equivalent database
results in a significantly more sanguine view of the issue than
is warranted.

III. ARCHITECTURE

Our focus is the development of a monitoring architecture
that can scale to hundreds or thousands of nodes while tracking
infection sources to individual files and processes. We do not
create any new intrusion detection algorithms. Instead, we
provide a framework for implementing previous schemes, such
as those of Malan and Smith [29], and Oliner et al. [32].

A. Community monitoring with sets

The application community [27] paradigm postulates that
if many instances of a piece of software collaborate and
share information about anomalous activity as it is occur-
ring, then despite the fact that the first few nodes may be
damaged, the remaining can be protected. Grid applications
are particularly well suited to utilize this model because they
perform a large computation by parallelizing it and executing
the same operations with different inputs on multiple nodes.
It is precisely the portion that is distributed that is likely to
contain vulnerabilities (as reasoned in Section II-A) since it
typically has a shorter life cycle with limited effort expended

Threat
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Threat

Anomalies

Anomalies

Digest
Threat

Grid Node

Grid Node

Grid Node

Grid Node

Digest

Grid NodeGrid Node

Grid Node

Grid Node

Anomalies
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Grid Node

Edit Layer 0 and 1 as needed

Edit Layer 0 and 1 as needed

Edit Layer 0 and 1 as needed
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Edit Layer 0 and 1 as needed

Edit Layer 0 and 1 as needed

Fig. 1. Anomalies on Grid nodes are reported to a central monitor that
correlates them and broadcasts a threat digest to all nodes in the community.

on hardening the code. Instead of requiring changes in the
user’s code, we audit and correlate the system call invocations
of the target application.

System call-based intrusion detection [21] builds a profile
of normal application behavior by recording all the observed
sequences of a predefined length during a training period
and then subsequently flagging as anomalous any sequence
of system calls that is not in the profile. Distributed versions
[29], [32] require the stream of all anomalous sequences to be
sent to a central monitor that correlates the activity.

We leverage two properties of these anomaly detection
algorithms. First, they operate on tuples of system calls,
treating them as integral elements. Second, the three primary
steps can be framed as set operations:

• The definition of normal application behavior consists
of the union of all tuples observed during training.
Analogously, anomalous activity is considered to occur
when tuples seen in the operational phase do not satisfy
membership queries for the normal behavior set.

• Logging anomalous activity consists of a Grid node
constructing the union of anomalous tuples that it has
observed and sending this set to the central monitor.

• Determining when the same activity is occurring on two
Grid nodes can be effected by taking the intersection of
the sets of anomalies originating at the nodes. If the set is
empty, there is no correlation. The larger the cardinality
of the set intersection, the greater the correlation between
the anomalous activity occurring at the two nodes.

Finally, the same properties also allow us to define a fourth
operation that acts on sets of tuples of system calls:

• We can create a Grid vaccination by assembling a set
of dangerous tuples, which if observed on a Grid node
indicate the presence of an attack. This can be effected

2.4 Calculating Correlation
At the end of epoch t, the server calculates a correlation

digest D(t) using the anomaly digests it has received. (An
extension could use digests from past epochs to incorporate
a memory of anomalous activity.) What constitutes correla-
tion between sequences seen on distributed hosts depends on
the specific anomaly detection algorithm. We describe two
general examples of calculating correlation using anomaly
digests.

Static Thresholding
If the same k-tuple has been observed on more than a thresh-
old number Tc hosts within an epoch, then that k-tuple is
deemed to be correlated and should be included in the corre-
lation digest. The server can calculate this e�ciently by first
constructing a counting filter [8] C(t) with the jth bucket be-
ing the count of the number of anomaly digests received in
epoch t with their j

th bit set, and then setting every bit in
D(t) to 1 if the corresponding bucket in C(t) is over Tc and
otherwise to 0:

S : C(t)[j] =
X

i

Ai(t)[j]

S : D(t)[j] =

⇢
1 : C(t)[j] > Tc

0 : C(t)[j]  Tc

Dynamic Thresholding
If the rate at which anomalous activity is occurring does
not vary dramatically, static thresholding works well. An
alternative approach is to vary the threshold as a function
of the anomalous activity. As more hosts generate more
anomalies, the server’s threshold should increase, and vice
versa. This requires the server to estimate the activity level
on hosts in order to adapt the threshold Tc. This can be
done e�ciently by using counting filters instead of Bloom
filters for the anomaly digests Ai(t), and then normalizing
a baseline threshold Tb by the sum of the buckets of all the
anomaly digests:

S : Tc =
TbP

i

P
j Ai(t)[j]

The correlation digest is then calculated using the same
algorithm that is used for static thresholds.

2.5 Updating Hosts
After the server has calculated a new correlation digest

D(t), it sends the digest to every host Hi in the system:

S ! Hi : D(t)

The digest provides each host with a view of anomalous
activity that is occurring across the system. In particular,
it can be used as a threat digest [12] with intrusive activity
on more than Tc hosts automatically resulting in a digest at
all the remaining hosts that allows the same activity to be
recognized and flagged before the attack succeeds.

3. ANOMALY-PROVENANCE BRIDGE
When a host identifies an anomalous k-tuple, we are in-

terested in determining which process was responsible for
generating the k-tuple as well as which files had been tainted
by the process. Recording system events along with all their
arguments would allow the relevant processes and files to be
identified but create a very large audit log. Instead, we
leverage the fact that most arguments are not relevant. We
create a data provenance subsystem, and a bridge that al-
lows a specific k-tuple to be mapped to its provenance, as
depicted in Figure 2.

k
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5

1 5 6
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2 4

Table of k-tuples

1. openFile(processID, fileID)

6. openFile(processID, fileID)

5. openFile(processID, fileID)

4. writeFile(processID, fileID)

3. writeFile(processID, fileID)

2. readFile(processID, fileID)

Associated Provenance
Database

k
2

k
6

Figure 2: The anomaly-provenance bridge is a space-

e�cient data structure that links anomalous se-

quences to entries in the provenance database. For

example, looking up the k-tuple k5 yields identifiers

2 and 4, corresponding to vertices in the database.

3.1 Data Provenance
The provenance of a data object is characterized by the

set of processes that have modified it and recursively the
provenance of all the data objects that were inputs for those
processes. More details are accessible in the specification of
the Open Provenance Model [25]. Each host in the system
runs its own provenance collection service, which creates a
process vertex for each program that is run, a file vertex
for each new version of a file, and read and write edges
connecting process and file vertices.

3.2 Indexing k-tuples
Each time an anomalous k-tuple kj is observed on host

Hi, the arguments of all k system events are inspected. The
set of provenance vertices Vj = {v1, v2, . . .}, corresponding
to the process and files that are arguments of the jth k-tuple
of system events, is constructed and added to any existing
set in the APB:

Hi : APBi(kj)  
⇢

Vj : APBi(kj) = ;
Vj [APBi(kj) : APBi(kj) 6= ;

Every provenance-related system event will manifest in k

sequential k-tuples, necessitating a maximum of k new en-
tries in the APB. Since many sequences repeat in practice,
very few new entries are needed for an average k-tuple. In-
stead, provenance vertices may need to be added.

3.3 Utilization
Consider the case where a vulnerable distributed applica-

tion is running on a Grid being monitored by our system.
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SPADE (version 2)

• Motivated by 
development, 
deployment 
experiences

• Re-architected, 
re-implemented to 
accommodate:
– Diverse domains
– Evolving attributes
– Variable granularity
– Component decoupling

aggregated, reordered, and query-specifically pruned provenance elements to improve
latency and reliability when verifying responses [18], and embedded provenance wit-
nesses (precursors of sketches [17, 39]) as hints to reduce extraneous remote connec-
tions in distributed provenance queries [18].

To collect provenance without modifying applications or the operating system, events
from a user space filesystem [50] were fused with process-related information from
/proc (on Linux). Unmodified applications could ensure that a file’s provenance was
transparently transferred across network connections. This was accomplished by ap-
pending the provenance to the content if the filename was suitably augmented when
the file was opened for reading, and analogously extracting and recording the appended
provenance at the other end if the file was saved with an augmented filename [16].

In late 2009, the NIGHTINGALE project [45] began experimental use of SPADEv1.
NIGHTINGALE involved experts from 15 universities and corporations concurrently
developing parts of a speech technology toolchain that processed terabytes of data
on hundreds of computers. We expected that the provenance of intermediate outputs
would be used to optimize the subsequent steps in workflows. In practice, application-
generated metadata was maintained for this. Instead, SPADEv1 was used to locate bot-
tlenecks in distributed workflows by adding support to capture input and output at-
tributes and recording them in the provenance. It was also actively used to identify code
and data dependencies when releasing new versions of the toolchain.

Given the number of institutions involved, we anticipated that provenance certi-
fication would be widely employed, but it was not. We learned that SPADEv1’s de-
sign meant certification was finer-grained than warranted in many situations. Similarly,
the architecture imposed a high overhead for incorporating additional provenance at-
tributes, experimenting with novel storage and indexing models, and handling prove-
nance from diverse sources. This motivated a redesign in 2010.
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Fig. 1. SPADEv2 has a cross-platform kernel that decouples the collection, storage, and querying
of provenance metadata derived from applications, operating systems, and network activity.• SPADE: Support for Provenance 

Auditing in Distributed Environments, 
ACM/IFIP/USENIX Conference on 
Middleware, 2012
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New Domain Workflow

• Study application
• Identify significant agents, 

activities, entities
• Build causal model that 

relates elements
• Create / configure 

instrumentation
• Develop a SPADE Reporter to:

– Ingest event stream
– Infer provenance
– Emit property graph elements

New Reporter
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Looking Inside 

• Dependency conflation
arises when:
– Instrumentation is at 

coarser level of 
abstraction

– Causality manifests at 
finer granularity

• Compiler 
instrumentation 
supports intra-process 
observation

Towards Automated Collection of Application-Level Data Provenance

Dawood Tariq Maisem Ali⇤ Ashish Gehani
SRI International

Abstract

Gathering data provenance at the operating system level
is useful for capturing system-wide activity. However,
many modern programs are complex and can perform
numerous tasks concurrently. Capturing their prove-
nance at this level, where processes are treated as sin-
gle entities, may lead to the loss of useful intra-process
detail. This can, in turn, produce false dependencies in
the provenance graph. Using the LLVM compiler frame-
work and SPADE provenance infrastructure, we investi-
gate adding provenance instrumentation to allow intra-
process provenance to be captured automatically. This
results in a more accurate representation of the prove-
nance relationships and eliminates some false dependen-
cies. Since the capture of fine-grained provenance in-
curs increased overhead for storage and querying, we
minimize the records retained by allowing users to de-
clare aspects of interest and then automatically infer
which provenance records are unnecessary and can be
discarded.

1 Introduction

Provenance refers to the history of ownership and usage
of an object. In the context of computation, provenance
refers to the source of data, as well as the details of how
the data has been used, modified, and transformed over
time. Tracking the computational provenance of data
has many useful applications, including ensuring the re-
producibility of experiments, determining code and data
dependencies when sharing research, and estimating the
quality of data.

The granularity at which provenance metadata is cap-
tured can have significant implications for its usability.
Capturing provenance at too coarse a granularity can re-
sult in the omission of important details and relation-
ships. Though provenance captured at the operating sys-

⇤Done while visiting SRI.

process:bash
pid:5226
ppid:2045

process:bash
pid:2045
ppid:2043

filename:httpd
path:/var/httpd
size:14350

filename:file1.html
path:/var/htdocs/file1.html

size:1205

filename:file2.html
path:/var/htdocs/file2.html

size:8136

filename:file3.html
path:/var/htdocs/file3.html

size:7160

process:terminal
pid:2043
ppid:1

local_ip:192.168.1.3
remote_ip:192.168.1.18

local_ip:192.168.1.3
remote_ip:192.168.1.25

local_ip:192.168.1.3
remote_ip:192.168.1.7

Figure 1: Provenance showing a Web server reading mul-
tiple files and transmitting data to multiple clients, as
captured at the operating system level by SPADE.

tem level allows visibility into system-wide behavior and
ensures that users are not restricted to the views of activ-
ity from a single application, the approach suffers from
two shortfalls – details within an application are lost,
and false dependencies are introduced in the provenance
graph.

To illustrate the issue, consider a simple Web server
that runs as a single process and serves Web pages
to clients through incoming network connections. As
shown in Figure 1, the data provenance (at the operat-
ing system level) of such an application shows a process
reading multiple files, and transferring data to multiple
connections across the network. While this representa-
tion is correct, it fails to allow a user to determine pre-
cisely which files were transferred to each connection.
As a result of this ambiguity, the provenance relation-
ships indicate false dependencies – they show that each
network connection is dependent on all the Web page
files that have been read by the server up to the point
that a request is served. For long-running processes, this
can have cascading effects in provenance queries as the
number of false dependencies increases.

Our experience with scientists who manually instru-
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ArgName:client
ArgVal:5

ID:serve_file.8-1
ArgType:i8*

ArgName:filename
ArgVal:0x243cda99

FunctionID:cat.18.2000
FunctionName:cat
ThreadID:2000

ID:cat.18-0
ArgType:i32

ArgName:client
ArgVal:5

ID:cat.18-1
ArgType:%struct._IO_FILE*

ArgName:resource
ArgVal:0x6754193

FunctionID:accept_request.9.2000
FunctionName:accept_request

ThreadID:2000

ID:accept_request.9-0
ArgType:i32

ArgName:client
ArgVal:5

FunctionID:serve_file.7.2000
FunctionName:serve_file

ThreadID:2000

ID:serve_file.7-0
ArgType:i32

ArgName:client
ArgVal:5

ID:serve_file.7-1
ArgType:i8*

ArgName:filename
ArgVal:0x9287c18d

FunctionID:cat.16.2000
FunctionName:cat
ThreadID:2000

ID:cat.16-0
ArgType:i32

ArgName:client
ArgVal:5

ID:cat.16-1
ArgType:%struct._IO_FILE*

ArgName:resource
ArgVal:0xaa12997d

Figure 3: Provenance captured using the LLVM Reporter shows tinyhttpd reading files and transmitting data to clients.
Since the provenance is recorded at the function call level, network connection artifacts (not shown) can be correlated
with the specific files served to the remote clients.

2.2 Collecting LLVM Emittances

SPADE [6] is a modular provenance management infras-
tructure. Its provenance kernel is agnostic to the domain
from which provenance is collected. Domain-specific
activity is transformed into a provenance record by a
SPADE Reporter. The LLVM Reporter is a Java class
that parses the output of the LLVM Tracer described
above, and sends appropriate provenance events to the
SPADE kernel.

A SPADE Reporter is an extension of the provenance
kernel and runs in the same address space. Since the
LLVM Tracer is compiled into the target application, it
runs in a different address space. To send provenance
metadata from the target application to the LLVM Re-
porter, our initial design considered printing the meta-
data to the standard output stream of the application. The
approach has significant limitations. First, the prove-
nance metadata is interleaved with the application’s out-
put, making interactive applications unusable. Second,
applications may fork child processes and then exit. In
this case, monitoring will terminate when the application
exits and will not extend to any child processes since the
original output stream is closed. Third, monitoring will
not be possible for servers that close their output streams
when launched (as many daemons do).

A more robust approach that addresses the above
shortcomings uses TCP sockets to send the provenance
metadata. When the LLVM Reporter is loaded by the
SPADE kernel, it launches a multi-threaded server that

accepts incoming connections. The LLVM Tracer com-
piled into each target application establishes and main-
tains a separate connection to the Reporter, sending
provenance metadata when function calls and exits oc-
cur. Application calls to close() the socket are ignored.

2.3 Reporting Application Provenance

To imbue the output with Open Provenance Model
(OPM) [5] semantics, we represent a function as an OPM
Process and the arguments and return values as OPM Ar-

tifacts. The calling function is responsible for generat-
ing the argument artifacts that the callee function uses.
The caller is connected to the artifacts with OPM was-

GeneratedBy edges, whereas the callee is connected to
the same artifacts with OPM used edges, signifying the
dataflow direction. Conversely, the callee function uses
these argument artifacts and generates a return value ar-
tifact that can be used by the calling function. The return
value is connected to the callee with an OPM wasGener-

atedBy edge and the caller with an OPM used edge.
A call stack is maintained in order to determine the

calling function for any callee function. Since a program
may be running multiple threads, each with its own call
stack, it is necessary to monitor the thread identifier for
each function entry and exit. Moreover, since a func-
tion may be invoked at arbitrary points during the exe-
cution of a program as well as by different threads, it
is important to distinguish the calling context of the in-
vocations. We define a function identifier based on the

3

Towards Automated Collection of Application-
Level Data Provenance, USENIX Theory and 
Practice of Provenance, 2012

Multiple
abstraction

levels
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Table 1: Overview of provenance collection methods properties.

system call analysis
static, compile-time

instrumentation
dynamic,

instruction-level
instrumentation

integration effort easy medium easy

prov. granularity6 file-level function-level byte-level

analysis scope process and children process, no dyn. lib. process and children

false positives many depends on
configured scope

negligible, tracks use
of individual bytes

execution
overhead

depends on the size
of program I/O

depends on the num-
ber of function calls

high, depends on the
taint tag type used

Reporter strace reporter LLVMTrace DataTracker

most of its provenance filtering, storage, and query infrastructure to be used
regardless of the instrumentation approach. Second, the distribution includes a
number of reporter modules, each of which can be used to collect provenance us-
ing a different methodology. As a result, we can easily plug the different methods
of instrumentation for our comparison while benefiting from SPADEv2’s infras-
tructures. Third, the system supports storage of provenance in a number of data
formats, including queryable ones such as the Neo4j graph database and the H2
(or any JDBC-compliant) SQL database. Fourth, the SPADEv2 platform can be
configured and managed with a control utility. This allows an analysis to be
repeatably executed (in order to measure behavior over multiple runs).

It is worth noting that the results of collecting provenance from the same
program on different operating systems may differ substantially in runtime and
storage overhead. Our comparisons have all been performed on Linux (see also
Section 2.3).

2.2 Provenance Collection Methods and Reporters

In our experiments, we used implementations of three representative methods for
automatic (i.e., non-disclosed) provenance capture: a. system-event trace anal-
ysis, b. compile-time static instrumentation, and c. instruction-level dynamic
instrumentation. An overview of the properties of these methods is presented in
Table 1. We now present the details of the specific SPADEv2 reporters we used
that implement these methods. It is important to emphasize that the implemen-
tations of the three methods used in this evaluation are not necessarily the best
or the fastest, but they serve as representative examples. For instance, it may
be that a highly optimized taint analysis solution improves the performance of
instruction-level dynamic instrumentation significantly, but the performance gap
with compile-time solutions would most likely remain.

Thread-specific attributes are added to each provenance element, in order to
to separate recorded activity from different threads into individual paths in the
resulting provenance graph. The transformation from the function call trace to
the provenance representation only captures direct data flows. Other types of
information flow (e.g. use of shared buffers) are not captured.

Dynamic Instruction-Level Solution: DataTracker DataTracker [21] is a
tool that captures provenance using Dynamic Taint Analysis (DTA). The analy-
sis is applied as Dynamic Binary Instrumentation (DBI) using the Intel Pin [15]
and libdft [13] frameworks. DataTracker adds instrumentation which determines
how the application uses the data as it executes. This allows the tool to strongly
reduce the number of false positives in the captured provenance compared to
methods based on heuristics—albeit at a high cost. Like system-events based
solutions, DBI has the benefit that provenance can be collected directly from
unmodified binaries, without requiring development effort to make applications
provenance-aware.

The type of taint metadata used by DataTracker is configurable. In [21], sets
of <file descriptor, offset> pairs are used for tracking the provenance of each
memory location. In this work, we instead opted to use bitsets—where each bit
represents a file descriptor. We made this change because the implementation of
std::set in libstdc++ proved very inefficient in practice. The research of data
structures that will enable DTA to track each input byte individually, while
offering reasonable performance, is an open problem.

We used SPADEv2’s Domain-Specific Language Reporter [9] (DSL reporter)
to integrate DataTracker with SPADEv2. DSL reporter is middleware to allow
the quick integration of new provenance sources with the SPADEv2 kernel. A
converter transforms DataTracker’s intermediate provenance representation to
the OPM-based [17] language of DSL-reporter. The following OPM provenance
elements are produced: a. Process elements are generated for each tracked OS
process, b. Artifact are used to represent files and byte ranges8, c. Used edges
are used to associate input artifacts with processes, and d. WasGeneratedBy,
WasDerivedFrom edges are used to associate output byte ranges with processes
and input artifacts.

Program
Source

LLVMTrace
Instrumented

Binary
Program

LLVM
Reporter

Binary
Program

Strace
Strace

Reporter

Data
Tracker

DSL
Reporter

SPADE
Kernel

Graphviz
Storage

Fig. 1: Provenance collection workflow for the three SPADEv2 reporters.

8 Byte ranges have a memberof: field pointing back to the file they come from.
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Integrating Provenance

• Merging streams with filters
– Aggregation (in time)
– Fusion (of complementary sources)
– Composition (from different layers)

• Policy-based integration
– Facilitates what-if analysis

• For graph abstraction
– Integration constraints
§ Account for influence of agents on 

activities, entities
– Attribution fidelity controlled by:
§ Threshold of matching
§ Trust tolerance

• Policy-Based Integration of 
Provenance Metadata, IEEE 
Symposium on Policies for 
Distributed Systems and 
Networks, 2011

• Provenance-Only Integration, 
USENIX Theory and Practice of 
Provenance, 2014

Operating system provenance

NCBI TIGR PDB Swiss−Prot

GADU Server

Pegasus Planner

PFAM BLOCKSBLAST THMM

300 Nodes

Globus Node Globus Node Globus Node

Workflow provenance

Comparative Analysis

Data Ingestion

Curated provenance

Application provenance

JGI

Database

Figure 1. The provenance of a GADU record requires the integration of provenance from manual curation in data banks, the GADU components, the
workflow system, and the operating system on numerous machines.

II. CHALLENGE

As scientists begin to get access to data sets that are
accompanied by provenance records, they are faced with
the challenge of integrating and analyzing this metadata.
Independent sources are likely to have captured provenance
at distinct levels of abstraction, have different levels of com-
pleteness, used separate sets of identifiers to refer to the same
artifacts, processes, and agents, and introduced dissimilar
semantics in the annotations. The issue is illustrated by
considering a representative example (depicted in Figure
1) – the provenance of records in the Genome Analysis
and Database Update (GADU) system, which is designed
to automate the assignment of functions to genes [24].

GADU works by periodically querying the National
Center for Biotechnology Information (NCBI) [17], Joint
Genome Institute (JGI) [14], The Institute for Genomic
Research (TIGR) [28], Protein Data Bank (PDB) [20], and
Swiss-Prot [26] data banks. If any new data is found, it is
downloaded to the GADU server. The Pegasus planner [7]
dispatches sequence data to hundreds of remote nodes. At
each node, reference data is drawn from BLAST [2], PFAM
[4], BLOCKS [13], and THMM [15] data banks for different
types of comparative analyses. The resulting output for each
then goes into a database.

As each of the constituent systems starts maintaining
provenance records, the output of a genome analysis work-
flow will have associated metadata that includes curated
provenance from NCBI, JGI, TIGR, PDB, Swiss-Prot,
BLAST, PFAM, BLOCKS, and THMM, application-level
provenance from the GADU software infrastructure, work-
flow provenance from Pegasus, and operating system-level
provenance collected from the Grid nodes where parts of
the analysis were executed. A scientist who wants to study

the notes associated with the sources of a specific genome
analysis, determine which database entries are dependent on
particular biological data, or conduct a broad study of the
relationship between certain molecules and properties known
about them would need to assemble the pieces from the
provenance records, reconciling variations in the syntax and
semantics, and then construct suitable queries.

III. POLICY-BASED INTEGRATION

Combining provenance metadata that has a range of sam-
pling granularities, abstraction levels, and attribute schema
creates new problems. In particular, the resulting information
can require large amounts of storage, degrade analytic per-
formance, and substantially complicate query construction.
We have developed an architecture for integrating and ana-
lyzing provenance metadata that arises from diverse sources.
It provides sufficient flexibility to handle the needs of a
wide range of applications. Rather than imposing arbitrary
choices about how the information is combined, the system
allows aggregation, fusion, and composition policies to
define tradeoffs that are appropriate for the target domains.

The current version of SPADE [25] is the second gen-
eration of our data provenance collection and management
software infrastructure. It includes a provenance kernel that
exposes a non-blocking interface to the modules that report
provenance. This minimizes the possibility of events being
dropped while waiting for the kernel to return control. Inter-
nally, the kernel maintains a buffer for each producer from
which it ingests events, utilizing the aggregation, fusion,
and composition filters to reconcile the provenance elements
where possible. By specifying policies in these filters, data
provenance can be integrated semi-automatically.
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Scaling

• ``Big Provenance’’:

– Bitcoin blockchain

– Audit logs

• Transformers
– Limit abstraction scope

– Operate at query time

– Dynamic graph rewrite

• Scaling SPADE to "Big 
Provenance", USENIX Theory and 
Practice of Provenance, 2016

• Streaming Provenance 
Compression, Lecture Notes in 
Computer Science, Vol. 11017, 

Springer, 2018

transactionIndex:1
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address:14NrwDLiAf7PjtXcRa9njrmTryXnK34yPL
type:Agent

address:13Pcmh4dKJE8Aqrhq4ZZwmM1sbKFcMQEEV
type:Agent

(type:ActedOnBehalfOf
transactionValue:1.6168084)

address:1CBbCuitHSjoaHX6HbcsDt929gTQsRNFPx
type:Agent (type:ActedOnBehalfOf

transactionValue:3.4225)

address:1M6yHKPHgpTpUCjQiJBRnHVkGCxTLnwLRb
type:Agent

(type:ActedOnBehalfOf
transactionValue:3.4225)

address:1Kpvq3yqj54gUv9iMaoevDaZr2z8CY68fn
type:Agent

(type:ActedOnBehalfOf
transactionValue:1.6168084)
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Querying

• System Support for Forensic 
Inference, Advances in Digital Forensics V, 2009

• Efficient Querying of Distributed Provenance 
Stores, ACM Challenges of Large Applications in 
Distributed Environments, 2010

• Declaratively Processing Provenance 
Metadata, USENIX Theory and Practice of 
Provenance, 2013

• ProvMark: A Provenance Expressiveness 
Benchmarking System, ACM/IFIP Middleware 
Conference, 2019

• Digging Into "Big Provenance" (With SPADE), 
Communications of the ACM, Vol. 64(12), 2021

lastmodified_unix:1308098054000
size:741

path:/home/speec...
filename:fsh_109487_1.files.feature_mean+var_norm

pidname:kickme
pid:3190
ppid:3189
uid:2056

starttime_unix:1308098052750

(endtime:1308098054944, iotime:967)

lastmodified_unix:1308098053000
size:60

path:/home/speec...
filename:fsh_109487_1.files.vtl

(endtime:1308098053425, iotime:225)

pidname:kickme
pid:5062
ppid:5061
uid:2056

starttime_unix:1308098093700

lastmodified_unix:1308098060000
size:1206

path:/home/speec...
filename:fsh_109487_1.files.feature_mean+var_norm

(endtime:1308098118416, iotime:183)

lastmodified_unix:1308098054000
size:741

path:/home/speec...
filename:fsh_109487_1.files.index_feature_mean+var_norm

(endtime:1308098118420, iotime:228)

pidname:mv
pid:3191
ppid:3183
uid:2056

starttime_unix:1308098054350

(endtime:1308098054976)

pidname:kickme
pid:3193
ppid:3192
uid:2056

starttime_unix:1308098054380

(endtime:1308098060375, iotime:10376) (operation:rename, endtime:1308098054977, iotime:750)

(endtime:1308098054977)

(endtime:1308098055077, iotime:277)

Rich query surface
(supports faceted search, set operations,
aggregate statistics on big data) 

Intuitionistic logic
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Diagnostics

• Android Provenance: Diagnosing 
Device Disorders, USENIX Theory and 
Practice of Provenance, 2013

• Discrepancy Detection in Whole 
Network Provenance, USENIX Theory 
and Practice of Provenance, 2020

• Clarion: Sound and Clear Provenance 
Tracking for Microservice 
Deployments, USENIX Security 
Symposium, 2021

(unique_id:-1942697676)

name:com.android.nfc
pid:499
ppid:126

uid:1027 1027 1027 1027
gid:1027 1027 1027 1027

starttime_unix:1354897556560
starttime_simple:Fri Dec 7 16:25:56 2012

commandline:com.android.nfc
unique_id:-730635543

(unique_id:612522616)

location:pipe:[4852]
unique_id:1975300905

(operation:read
time:1354897769.046

unique_id:-1900081167)

pid:537
ppid:126

uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897556770
starttime_simple:Fri Dec 7 16:25:56 2012

commandline:com.android.settings
unique_id:2139699137

(unique_id:-123016909)

name:d.process.acore
pid:561
ppid:126

uid:10000 10000 10000 10000
gid:10000 10000 10000 10000
starttime_unix:1354897557080

starttime_simple:Fri Dec 7 16:25:57 2012
commandline:android.process.acore

unique_id:-39070891
(unique_id:885638093)

name:android.smspush
pid:594
ppid:126

uid:10041 10041 10041 10041
gid:10041 10041 10041 10041
starttime_unix:1354897557290

starttime_simple:Fri Dec 7 16:25:57 2012
commandline:com.android.smspush

unique_id:263148636
(unique_id:-93301477)

name:droid.deskclock
pid:699
ppid:126

uid:10009 10009 10009 10009
gid:10009 10009 10009 10009
starttime_unix:1354897559750

starttime_simple:Fri Dec 7 16:25:59 2012
commandline:com.android.deskclock

unique_id:-250020650(unique_id:1259667141)

name:ndroid.contacts
pid:719
ppid:126

uid:10000 10000 10000 10000
gid:10000 10000 10000 10000
starttime_unix:1354897559870

starttime_simple:Fri Dec 7 16:25:59 2012
commandline:com.android.contacts

unique_id:1137234942(unique_id:1912976740)

name:viders.calendar
pid:750
ppid:126

uid:10006 10006 10006 10006
gid:10006 10006 10006 10006
starttime_unix:1354897560100

starttime_simple:Fri Dec 7 16:26:00 2012
commandline:com.android.providers.calendar

unique_id:1464920195(unique_id:452875782)

name:m.android.email
pid:771
ppid:126

uid:10011 10011 10011 10011
gid:10011 10011 10011 10011
starttime_unix:1354897560640

starttime_simple:Fri Dec 7 16:26:00 2012
commandline:com.android.email

unique_id:-1837160890(unique_id:-682474400)

name:ndroid.exchange
pid:788
ppid:126

uid:10012 10012 10012 10012
gid:10012 10012 10012 10012
starttime_unix:1354897560860

starttime_simple:Fri Dec 7 16:26:00 2012
commandline:com.android.exchange

unique_id:-250732798(unique_id:-1024702992)

name:com.android.mms
pid:852
ppid:126

uid:10022 10022 10022 10022
gid:10022 10022 10022 10022
starttime_unix:1354897621150

starttime_simple:Fri Dec 7 16:27:01 2012
commandline:com.android.mms

unique_id:2038361340(unique_id:-358920562)

name:oid.voicedialer
pid:879
ppid:126

uid:10039 10039 10039 10039
gid:10039 10039 10039 10039
starttime_unix:1354897621990

starttime_simple:Fri Dec 7 16:27:01 2012
commandline:com.android.voicedialer

unique_id:677857419
(unique_id:1408376993)

name:tats_xdaedition
pid:892
ppid:126

uid:10045 10045 10045 10045
gid:10045 10045 10045 10045
starttime_unix:1354897622100

starttime_simple:Fri Dec 7 16:27:02 2012
commandline:com.asksven.betterbatterystats_xdaedition

unique_id:1608631313

(unique_id:-425932547)

name:ndroid.calendar
pid:907
ppid:126

uid:10005 10005 10005 10005
gid:10005 10005 10005 10005
starttime_unix:1354897622530

starttime_simple:Fri Dec 7 16:27:02 2012
commandline:com.android.calendar

unique_id:-899647481
(unique_id:-990162494)

name:Binder_1
pid:415
ppid:126

uid:10035 10035 10035 10035
gid:10035 10035 10035 10035
starttime_unix:1354897555750

starttime_simple:Fri Dec 7 16:25:55 2012
commandline:com.android.systemui

unique_id:467774965

name:Binder_5
pid:693
ppid:126

uid:10035 10035 10035 10035
gid:10035 10035 10035 10035
starttime_unix:1354897559720

starttime_simple:Fri Dec 7 16:25:59 2012
commandline:com.android.systemui

unique_id:378260268

name:Binder_4
pid:666
ppid:126

uid:10035 10035 10035 10035
gid:10035 10035 10035 10035
starttime_unix:1354897558790

starttime_simple:Fri Dec 7 16:25:58 2012
commandline:com.android.systemui

unique_id:414342950

(operation:write
time:1354897771.320
unique_id:-434353711)

name:Binder_3
pid:525
ppid:126

uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897556670
starttime_simple:Fri Dec 7 16:25:56 2012

commandline:system_server
unique_id:495624522

(operation:write
time:1354897769.351
unique_id:-564059031)

(operation:write
time:1354897770.445

unique_id:-1096086812)

(operation:write
time:1354897773.453
unique_id:427183104)

(operation:write
time:1354897774.460

unique_id:-1218611077)

(operation:write
time:1354897785.765

unique_id:1464306883)

(operation:write
time:1354897785.828
unique_id:-938733686)

name:Binder_5
pid:578
ppid:126

uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897557180
starttime_simple:Fri Dec 7 16:25:57 2012

commandline:system_server
unique_id:524598006

(operation:write
time:1354897785.835

unique_id:1474038940)

name:Binder_2
pid:480
ppid:126

uid:10017 10017 10017 10017
gid:10017 10017 10017 10017
starttime_unix:1354897556460

starttime_simple:Fri Dec 7 16:25:56 2012
commandline:com.android.inputmethod.latin

unique_id:9145676

name:Binder_2
pid:534
ppid:126

uid:10018 10018 10018 10018
gid:10018 10018 10018 10018
starttime_unix:1354897556740

starttime_simple:Fri Dec 7 16:25:56 2012
commandline:com.android.launcher

unique_id:1605841672

(operation:write
time:1354897785.992
unique_id:-663989547)

name:Binder_6
pid:582
ppid:126

uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897557230
starttime_simple:Fri Dec 7 16:25:57 2012

commandline:system_server
unique_id:524599314

(operation:write
time:1354897786.648

unique_id:-1283038892)

(operation:write
time:1354897786.648
unique_id:-608435283)

name:Binder_1
pid:479
ppid:126

uid:10017 10017 10017 10017
gid:10017 10017 10017 10017
starttime_unix:1354897556450

starttime_simple:Fri Dec 7 16:25:56 2012
commandline:com.android.inputmethod.latin

unique_id:9145636

(operation:write
time:1354897797.734

name:Binder_1
pid:516
ppid:126

uid:1001 1001 1001 1001
gid:1001 1001 1001 1001

starttime_unix:1354897556630
starttime_simple:Fri Dec 7 16:25:56 2012

commandline:com.android.phone
unique_id:-653778833

name:Binder_2
pid:522
ppid:126

uid:1001 1001 1001 1001
gid:1001 1001 1001 1001

starttime_unix:1354897556650
starttime_simple:Fri Dec 7 16:25:56 2012

commandline:com.android.phone
unique_id:-653778983

(operation:write
time:1354897798.992

unique_id:1414961915)

pid:1293
ppid:666

uid:10035 10035 10035 10035
gid:10035 10035 10035 10035

unique_id:1111290287

pid:1294
ppid:534

uid:10018 10018 10018 10018
gid:10018 10018 10018 10018

unique_id:590452190

(unique_id:-1283105861)

location:socket:[2654]
unique_id:-557842300

(operation:write
time:1354897793.132

unique_id:-1167893643)

name:WindowManagerPo
pid:347
ppid:126

uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897554880
starttime_simple:Fri Dec 7 16:25:54 2012

commandline:system_server
unique_id:-98472561

(operation:write
time:1354897785.773

unique_id:1614879654)

(operation:write
time:1354897792.882

unique_id:-2076249175)

name:message
pid:624
ppid:126

uid:1027 1027 1027 1027
gid:1027 1027 1027 1027

starttime_unix:1354897557900
starttime_simple:Fri Dec 7 16:25:57 2012

commandline:com.android.nfc
unique_id:944470417

(unique_id:-696753723)

location:/dev/ttyO3
unique_id:-1000313966

(operation:write
time:1354897769.023

unique_id:1878688592)
name:reader

pid:622
ppid:126

uid:1027 1027 1027 1027
gid:1027 1027 1027 1027

starttime_unix:1354897557770
starttime_simple:Fri Dec 7 16:25:57 2012

commandline:com.android.nfc
unique_id:-941024322

(unique_id:-1965205818)

(operation:read
time:1354897769.023
unique_id:763011466)

name:AsyncTask
pid:1169
ppid:126

uid:1027 1027 1027 1027
gid:1027 1027 1027 1027

starttime_unix:1354897541000
starttime_simple:Fri Dec 7 16:25:41 2012

commandline:com.android.nfc
unique_id:-836205055

(unique_id:-99654924)

(operation:write
time:1354897769.046
unique_id:301497812)

(unique_id:1264728275)

location:pipe:[2624]
unique_id:1975096942

(operation:write
time:1354897769.359
unique_id:-412647016)

(operation:write
time:1354897785.835

unique_id:1625526227)

(operation:write
time:1354897792.882

unique_id:-2076247332)

name:AlarmManager
pid:345
ppid:126

uid:1000 1000 1000 1000
gid:1000 1000 1000 1000

starttime_unix:1354897554840
starttime_simple:Fri Dec 7 16:25:54 2012

commandline:system_server
unique_id:25773557

(operation:write
time:1354897799.992

unique_id:1584462101)

(unique_id:1297999966)

location:pipe:[4614]
unique_id:1975364269

(operation:write
time:1354897812.296
unique_id:-370865817)

(operation:write
time:1354897793.554
unique_id:416597677)

(operation:write
time:1354897786.781
unique_id:349872841)

(operation:write
time:1354897792.695
unique_id:-621221944)

(operation:write
time:1354897792.906
unique_id:-607497964)

(unique_id:612412216)

(operation:read
time:1354897784.375

unique_id:1377911688)

location:pipe:[4613]
unique_id:1975364304

(operation:write
time:1354897812.296
unique_id:-370787732)

(operation:write
time:1354897793.554
unique_id:416675762)

(operation:write
time:1354897793.078

unique_id:-1945976944)

(operation:write
time:1354897792.687
unique_id:-620474585)

(operation:write
time:1354897786.781
unique_id:349950926)

(operation:write
time:1354897793.195

unique_id:-1262435389)

(operation:write
time:1354897792.695
unique_id:-621143859)

(operation:write
time:1354897792.898
unique_id:-605236991)

(unique_id:-637782482)

location:/sys/class/timed_output/vibrator/enable
version:1

(operation:write
time:1354897792.484
unique_id:-459738746)

(unique_id:-712316021)

location:/sys/power/wake_lock
version:4

unique_id:2085087675

(operation:write
time:1354897785.835

unique_id:-1836870928)

(unique_id:940389190)

(unique_id:1527261852)

(unique_id:-709029176)

(operation:read
time:1354897792.914
unique_id:-266026093)

(operation:write
time:1354897792.570

unique_id:-1234621486)

(operation:read
time:1354897792.921

unique_id:-1562494100)

(operation:clone
time:1354897792.804

unique_id:-1430653828)

location:/proc/1258/oom_adj
version:1

unique_id:57797883
(operation:write

time:1354897792.882
unique_id:171800665)

location:/proc/512/oom_adj
version:1

unique_id:-375400511

(operation:write
time:1354897792.890

unique_id:1389073313)

location:/proc/463/oom_adj
version:2

unique_id:735094259

(operation:write
time:1354897793.140

unique_id:-1960463303)

(unique_id:-2596764)

(unique_id:-1200379102)

(unique_id:-1200297816)

(unique_id:-864294712)

location:/sys/power/wake_lock
version:22

unique_id:2085087079

(operation:write
time:1354897799.992

unique_id:-1878963060)

location:/proc/512/oom_adj
version:3

unique_id:-375400509

(operation:write
time:1354897800.070
unique_id:691247019)

(operation:clone
time:1354897812.187
unique_id:623245390)

(operation:clone
time:1354897812.187

unique_id:1801791908)

location:/proc/463/oom_adj
version:4

unique_id:735094261

(operation:write
time:1354897812.320
unique_id:-237927073)

Figure 6: A portion of a provenance graph for the Android system.

7

14



Security
• Using Provenance Patterns to Vet 

Sensitive Behaviors in Android Apps, 
Conference on Security and Privacy in 
Communication Networks, 2015

• Mining Data Provenance to Detect 
Advanced Persistent Threats, USENIX 
Theory and Practice of Provenance, 2019

• TRACE: Enterprise-Wide Provenance 
Tracking For Real-Time APT 
Detection, IEEE Transactions on 
Information Forensics and Security, 2021

• PACED: Provenance-based Automated 
Container Escape Detection, IEEE 
Conference on Cloud Engineering, 2022

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17,NO. 0,AUGUST 2021 5

Fig. 1. The graphs above show different ways the same underlying UBSI
activity was represented across engagements. The activity is the dataflow
between two units through two memory locations. In (a), for Engagement
1, the activity is reported as direct read and write events on memory
locations by units. In Engagement 2 and Engagement 3, the memory
locations were abstracted away, and direct edges exist between the two
units, as shown in (b). The final refinement made in Engagement 4 was to
output only the last unit dependency between any two distinct units,
shown in (c).

the provenance graph, as shown in Fig. 1(c).

B. Enterprise-Wide Provenance Tracking

SPADE [16] is an open source software infrastructure that
provides support for provenance auditing in distributed
environments. TRACE uses it as an integration framework.
SPADE uses a graph-based data model consisting of vertices
and directed edges, each of which can be labeled with an
arbitrary number of annotations. The model uses the following
three vertex and five edge types (Figure 1) from the Open
Provenance Model (OPM) [48] ontology:
Two Vertex Types: (1) Controlling Agent, executing Process
(blue rectangles), and (2) Data Artifact (yellow ovals).
Five Edge Types: Defining (1) which process used which
artifact (green arrows), (2) which artifact wasGeneratedBy
which process (red arrows), (3) which process wasTriggeredBy
which other process (blue arrows), (4) which artifact was-
DerivedFrom which other artifact, and (5) which process
wasControlledBy which agent.

TRACE extends the ontology to handle the constructs de-
scribed in the following sections. SPADE has been architected
to decouple the collection, filtration, storage, and utilization of
provenance metadata, as illustrated in Figure 2. A novel prove-
nance kernel mediates between producers and consumers of
provenance information, and handles the persistent storage
of the records. The kernel handles buffering, filtering, and

TABLE II
TIME AND SPACE OVERHEAD MEASUREMENTS OF UBSI ACROSS

ENGAGEMENTS USING FIREFOX 54.0.1 WITH THREE BROWSER
BENCHMARKS, JETSTREAM [45], OCTANE [46], AND SPEEDOMETER [47].

Benchmarks Time Overhead Space Overhead
Eng. 1-3 Eng. 4-5 Eng. 1-2 Eng. 3-5

JetStream2.0 [45] 351% 22.6% 6,952% 7.1%
Octane2 [46] 414% 16% 3,398% 10%

SpeedoMeter2.0 [47] 591% 15.99% 1,603% 11.94%
Average 452% 18% 3,984% 10%
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Fig. 2. Overview of the components and dataflow in the TRACE provenance
tracking system. It includes two layers: a host-level tracking layer built around
UBSI and an enterprise-wide tracking layer built on SPADE. As applications
run, provenance is inferred by auditing and interpreting their system calls,
including those generated by unit instrumentation.

multiplexing incoming metadata from multiple provenance
reporters via a non-blocking interface; supports multiple
provenance stores; and responds to concurrent queries from
provenance consumers. The kernel also supports modules that
operate on the stream of provenance graph elements, allow-
ing the aggregation, fusion, and composition of provenance
elements to be customized with provenance filters [49].

The TRACE system uses two sources of information about
system activity that were used to output provenance in a
Common Data Model (CDM) format. The two sources include:
• Linux Audit. This component of the operating system

kernel was configured to log all system calls specified in
Table III. Calls from all processes across the host were
audited except for those that are executed by the TRACE
system.

• UBSI Instrumentation. Linux Audit does not provide
information regarding the dataflows through memory in
and between threads. This dataflow was captured by UBSI
instrumented programs. UBSI instrumentation divides a
program into individual components called units that are
iterations of program loops. It then audits reads and writes
by units of memory locations shared between threads.
SPADE’s Audit Reporter was extended to process the two

aforementioed sources to generate provenance. A single audit
event received contains the following information: system call
(number, arguments, return values), process identifiers (pid,
ppid), user identifiers (uid, gid, euid, egid). and supplementary
information (e.g., remote network address, filesystem paths).
The Audit Reporter uses the event records to build an overview
of the system in terms of these provenance objects:

• Process. The subject or object of the system call.
• Unit. The subject performing read or write on a memory
address.
• Artifact. The objects affected by the system call. The
objects through which dataflow was reported were: (1)
Local Filesystem Artifacts: regular file, named pipe,
unix socket; (2) Memory: Address allocated in a thread or
affected by a unit; (3) Network: Local or remote address;
(4) IPC: unnamed pipe; and (5) Unidentified: Unknown
objects whose type could not be determined.
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Fig. 9. Engagement 5: Normalized Drakon attack graph. Firefox
process is hijacked by navigating to a malicious host. The hijack is detected
because of Firefox process allocating executable memory in the Exploit
component. The cause of the privilege escalation was not present in the
TRACE data, but privilege escalation was detected because of change in
uid of the Firefox process in the Privilege Escalation & Code
Injection component. In the same component, the hijacked Firefox
process is seen using ptrace system call to inject code into the sshd pro-
cess. Finally, in the Reconnaissance & Exfiltration component,
the hijacked sshd process connects to the attacker, does reconnaissance, and
exfiltrates information to the attacker.

added to the TRACE system to prevent the termination of any
component of the TRACE system unless authenticated. This
prevented the attacker from terminating any TRACE system
processes or unloading the SPADE kernel modules.

1) Multiple-Performers: The attacker used ssh to log
into the host using stolen credentials from another com-
promised machine. The attacker copied /etc/passwd and
/etc/hosts files and connected to another host. All attack
stages (4/4) were present in the TRACE data, but none were
detected by the only analysis team.

2) Firefox-Drakon: (Figure 9). Firefox navigated to a
compromised website. The compromised website exploited a
vulnerability in Firefox and took control of the Firefox
process. Firefox was hijacked by allocating memory, writ-
ing the malicious code to it, and transferring execution to
it. The hijacked Firefox process gained root privileges
using a new technique, which was not detected. However, it
was seen that the hijacked Firefox process’ uid changed
to root. The hijacked process injected shellcode into the
sshd process using ptrace. The hijacked sshd process
read /etc/passwd file and other system information. This
attack was not detected by any team, but the attack was found
partially in the data. The in-memory execution was not found
along with the reconnaissance activity by the attacker. 4/6
attack stages were present in the TRACE data, but none of
the stages were detected by the lone analysis team.

3) Azazel: The attacker used ssh to log into the host using
stolen credentials. A malicious library was downloaded and
added to the LD_PRELOAD shell variable. The update of the
variable was not visible in TRACE output because no system
call was used, but its effect was seen when a process loaded
the library into its memory. For the attack, that program was
nc. The intention was to have the nc process connect to the

attacker without the user being aware. However, the hijacked
nc process failed to connect to attacker and could not gather
system information. The analysis teams did detect the copying
of the malicious library to the host, but they did not detect any
more activity on the host by the attacker. The initial connection
by the attacker and the use of the malicious library was present
in the data. The attacker failed to do reconnaissance, and
therefore it was neither detected nor present in the data. 3/4
stages of the attack were present in the TRACE data. The
analysis team detected only one of the three available attack
stages.

Engagement-5 Summary: TRACE provided evidence of 11/14
attack steps across 3 attacks. There was only one analysis team and
that was able to identify only 1/11 attack steps present in the data.
1/3 missed steps were attributed to a failed attack by APT launched
against TRACE. Lessons: There was a significant improvement
in resilience due to self-protection techniques implemented prior
to this evaluation.

V. ADVERSARIAL ENGAGEMENTS DATASETS

In Table V, we summarize the datasets collected over the
course of the five engagements to demonstrate their scale. For
each dataset, the following information is provided:

• CDM Avro Size (GB). Size in GigaBytes of the
provenance stored by CDM storage module in Avro [52]
format.
• Deployment Time (Hours). Number of hours TRACE
was deployed.
• Total CDM Records. Absolute number of CDM storage
module records.
• Percentage Of UBSI CDM Records. Percentage
of CDM storage module records generated by UBSI-
instrumented applications.

Each dataset was collected over a widely varying period
of time so that the attacks could be camouflaged among
normal system activity. Thus the size of the datasets, and
the events generated by UBSI-instrumented applications differ
greatly between datasets. For example, in Engagement 5, the

TABLE V
STATISTICS OF TRACE DATASETS FROM ENGAGEMENTS 1-5

Engagement
Dataset CDM Avro Deploy- Total CDM Percentage
Name Size (GB) ment Records Of UBSI

Time CDM
(Hours) Records

1
Bovia 157.88 79.11 2,340,926,569 64.89

Pandex 100.11 79.09 1,485,144,884 66.23
Bovia- 11.34 7.99 168,341,409 65.77Stretch

2
Team-1 17.78 150.90 157,447,700 45.29
Team-2 20.26 150.88 171,368,563 22.40
Team-3 25.17 150.97 219,551,185 33.16

3 TRACE-0 131.15 255.88 1,017,052,486 10.32
TRACE-1 4.83 7.22 32,130,369 22.87

4
Multiple- 4.37 6.78 29,767,637 22.01Performers

TRACE-A 5.79 8.15 39,133,083 18.03
TRACE-B 8.16 8.04 48,869,496 21.15

5
TRACE-1 243.92 248.37 1,848,418,027 3.15
TRACE-2 250.97 248.37 1,909,729,948 2.59
TRACE-3 228.44 248.36 1,781,760,298 0.00006

Partial observability (facilitates scaling)
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Impact

• Research Infrastructure
– Competing concerns (community use / design iteration)
– 100+ GitHub stars / 60+ forks
– Anecdotal: Used in software build / staging
• Academic
– 250+ citations
– Anecdotal: Used to create other systems
• Datasets
– Provenance Benchmark Challenge
– DARPA Transparent Computing Adversarial Engagements (3 & 5)
• Industry
– Streamlined + extended version licensed to

AccuKnox (container security company)
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