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ABSTRACT
Climate Change is arguably the biggest challenge that humanity
faces today. Multiple trends such as the exponential explosion of
data transfer, the emergence and popularity of power intensive
workloads such as AI, and the flattening of Moore’s law contribute
to a rising concern over the increasing carbon footprint cost of
digital computation. Any effective strategy to reduce the energy
consumption and associated carbon footprint of computations must
beginwith an accurate and transparent quantificationmethod. How-
ever, while most businesses today run a significant portion of their
workloads on third party cloud environments, transparent carbon
quantification of tenant workloads in cloud environments is lack-
ing. This regretful situation inhibits reliable reporting of Scope 3
Green House Gas (GHG) by cloud users, meaningful comparison
of cloud carbon efficiencies, and measurable reduction strategies.
In this extended abstract we explain the unique challenges that
arise in multi-tenant cloud environments, and propose and discuss
an approach, consistent with the GHG Protocol, for cloud carbon
footprint quantification. The quantification is a first step towards
sustainable cloud environments, that employ dynamic controllers
to quantify and reduce the carbon footprint at every layer of the
cloud stack.
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1 INTRODUCTION
Science determined that humanity must reach net zero green house
gas emission by the year 2050 in order to keep global warming
below 1.5 degrees Celsius relative to the pre-industrial era. [7]

Pressure on enterprises is drastically increasing from consumers,
regulators, governments, and employees to reduce the carbon emis-
sion associated with the (direct or indirect) operation of their busi-
nesses. Investors demand to see bold action from businesses to
reduce their carbon footprint. In the current climate (pun intended),
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green washing, a term coined to describe a behavior of conveying
misleading, or inaccurate information about the carbon emission
associated with company’s products, processes, or services, may
lead to dire business consequences.

Compute data centres account for 200 TWh yr [19], or around 1%
of total global electricity demand. While data center energy usage
has been stable in recent years, multiple trends such as the explo-
sion of data and data transfer, the proliferation of AI (see e.g., [27]),
and the flattening of Moore’s law (see e.g., [17]) have caused some
to raise the alarm on the expected increase in the carbon cost of
computing. In particular, while Artificial Intelligence(AI) has revo-
lutionized how businesses address data for rapid actionable insight,
it is also associated with a huge carbon cost. AI accuracy continued
to improve in the last decade, however training energy cost have
increased by a staggering 300,000x [27]. In addition, it has been
shown that some large AI training jobs consume the equivalent
of 5 cars carbon footprint throughout their life time [28]. Unfortu-
nately, we have also reached the physical limits in semiconductor
miniaturization as a viable way to increase efficiency of general
purpose computer chips (CMOS) (see e.g., [17]) leading to a golden
era of special purpose systems (see e.g., [12]). Due to these trends,
it is anticipated by some that under no action data center energy
consumption will increase to 12% or more by 2030 [8]. Energy is
the main cost factor in running a data center, therefore efficiency
has always been a goal. However, due to increased attention to
climate change, reducing the carbon footprint associated with data
centers, also factoring in the source of the energy and its intensity,
attempting to maximize use of clean energy such as solar and wind
is a new frontier of research.

Cloud computing offers a promise of greater efficiencies due to
the multiplexing of a diverse set of workloads on a shared pool
of resources, automation, and in particular, auto-scaling, efficient
hardware, and bold acquisition of renewable energy. Unfortunately,
the inherent nature of cloud computing works against transparency.
Businesses running their workloads on most commercial clouds
have no visibility necessary to determine the electric power con-
sumed by the resources they use. This discrepancy has been noted
in [25] which further claims that cloud providers ought to calculate
and make available the energy and carbon footprint associated with
every cloud tenant. While Azure [1] and Google Cloud Platform [2]
recently provided some tenant carbon footprint calculation tools
[3, 4] there are no sufficient details on the methods being used
and the boundary conditions. Consequently, it is impossible to use
these tools to compare with confidence the efficiency of these cloud
environments for different workloads.

In the scientific literature multiple works focus on estimating
the energy consumed by servers (e.g., [15, 23]), Virtual Machines
(e.g. [18, 31]), containers (e.g. [13, 14, 31]), and applications (e.g.,
[20]), however, while these works provide valuable insight, methods
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and tools, they do not address the complexity of a cloud environ-
ment, and they are inconsistent with the GHG Protocol Guidance
Document for Cloud Services ( [5]).

Challenges that are unique to a cloud environment include multi-
tenancy - the fact that multiple customer workloads are sharing a
set of physical resources, such as servers and routers. In addition,
different granularity of sharing, and levels of abstraction may exist
in the same cloud environment. For example, customers may or may
not share physical servers or Virtual Machines in multi-tenant ser-
vices performing computation or data management. The style and
units of computation may vary dramatically across services (e.g.,
transactions, stateless functions, or ML training jobs). Cloud dy-
namicity such as auto-scaling, and advanced optimization methods,
such as dynamic power management complicate the calculation
even further.

In this Extended Abstract we discuss the principles described
in the GHG protocol as they pertain to cloud services [5, 6] and
offer an approach to quantify the carbon footprint of cloud tenants.
Many challenges and open questions remain and are discussed here
as well.

2 MODEL
A simple model for calculating the carbon footprint of a data center
is given by

𝐶𝐹𝑃𝐷𝐶 = 𝐸𝑇𝑂𝑇𝐴𝐿 ×𝐶𝐼 (1)

Where 𝐸𝑡𝑜𝑡𝑎𝑙 is the total amount of energy that the data center
consumes (a number that is easily obtained) and 𝐶𝐼 is the carbon
intensity, namely the amount of carbon dioxide (or equivalent)
released to the atmosphere per a unit of energy (expressed in grams
of carbon dioxide equivalent per megajoule (gCO2e/MJ)). Carbon
intensity factors in the source of the energy, i.e., the method of
production, where renewable energy, such as energy produced
from solar or wind power, enjoy a carbon intensity that is close
to 0. The carbon intensity associated with a particular data center
depends on the electric grid being used among other factors.

The second aspect to consider is non-IT energy. The total data
center energy 𝐸𝑡𝑜𝑡𝑎𝑙 equals 𝐸𝐼𝑇 + 𝐸𝑛𝑜𝑛𝐼𝑇 , where,𝐸𝐼𝑇 is the energy
consumed by the servers and network devices, and 𝐸𝑛𝑜𝑛𝐼𝑇 is the en-
ergy used for everything else, including cooling, power distribution,
and lighting.

Power usage effectiveness (PUE) is a measure of the efficiency
of energy use. It is given by 𝑃𝑈𝐸 = 𝐸𝑡𝑜𝑡𝑎𝑙/𝐸𝐼𝑇 . Obviously, 𝑃𝑈𝐸
equals 1 is optimal, however, in most traditional data centers we
can expect 𝑃𝑈𝐸 values of 1.5 or even higher. Encouragingly, some
hyperscalers claim to have reached near optimal 𝑃𝑈𝐸.

Equation 1 can now be written as

𝐶𝐹𝑃𝐷𝐶 = 𝐸𝐼𝑇 × 𝑃𝑈𝐸 ×𝐶𝐼 (2)

We posit that in a cloud environment we can and should further
break 𝐸𝐼𝑇 to payload energy (𝐸𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ), used for tenant workloads,
and management energy (𝐸𝑚𝑛𝑔), used for cloud management soft-
ware such as Software Defined Network (SDN), storage, schedulers,
monitoring, metering, and billing. These platform services are typ-
ically not used by end-users, nevertheless they consume energy
that must be factored in. Additionally, we define 𝐸𝑟𝑒𝑠𝑒𝑟𝑣𝑒 as the

energy consumed by all servers that are not currently running any
tenant workload, or platform services. Idle power, i.e., the power
used by physical hosts when there is no load, can reach 50% of the
maximum power draw. This is a significant amount of energy, and
obviously must be factored in by any proper accounting method.

As we will discuss later, the GHG Protocol mandates that all
data center energy must be split among the tenants for Scope 3
accounting purposes. We therefore propose a new term cloud power
usage effectiveness, or 𝐶𝑃𝑈𝐸 that we define as follows:

𝐶𝑃𝑈𝐸 = 𝐸𝑡𝑜𝑡𝑎𝑙/𝐸𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = (3)
(𝐸𝑚𝑛𝑔 + 𝐸𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝐸𝑟𝑒𝑠𝑒𝑟𝑣𝑒 + 𝐸𝑛𝑜𝑛𝐼𝑇 )/𝐸𝑝𝑎𝑦𝑙𝑜𝑎𝑑 (4)

Clearly, 𝐶𝑃𝑈𝐸 ≥ 𝑃𝑈𝐸. We argue that 𝐶𝑃𝑈𝐸 is a valuable mea-
sure of a cloud energy efficiency since it factors in not only the
overhead of cooling and power distribution, but also the overhead
of management services and reserved capacity in running tenant
workloads.

Equation 2 can be generalized as follows:

𝐶𝐹𝑃𝐷𝐶 = 𝐸𝑝𝑎𝑦𝑙𝑜𝑎𝑑 ×𝐶𝑃𝑈𝐸 ×𝐶𝐼 (5)

The model above is too coarse grained to account for individual
tenant workloads.

Lets formally denote the set of tenants associated with a data
center as 𝑇𝐷𝐶 = 𝑇1, ...,𝑇𝑛 . Lets assume for simplicity that this set is
static. 𝐶𝐹𝑃𝑖 denotes the carbon footprint associated with tenant 𝑇𝑖 .

At any time interval, a tenant 𝑇𝑖 runs a number of workloads
in a datacenter given by𝑊𝑖 = {𝑤1

𝑖
, ...𝑤𝑘

𝑖
}. Every workload is a

distributed application that may run on multiple VMs and servers.
Different components of the application may communicate, con-
suming additional energy from routers and switches along the
communication path. The workload’s resource consumption, is the
summation of energy consumed by resources used by the work-
load, including, CPU, Memory, Disk, IO, of all devices used by the
workload. This is a dynamic set. Formally, Let 𝑅 = {𝑟1, ...𝑟𝑡 } be the
set of IT resources in the data center including servers, routers, and
switches. Let 𝑅𝑤 ⊂ 𝑅 be the subset of resources used by workload
𝑤 . We assume workloads are not shared across tenants, namely
𝑊𝑖 ∩𝑊𝑗 = ∅ iff 𝑖 ≠ 𝑗 . However, workloads may, and typically
will, share resources, such as servers and network devices. Namely,
𝑅𝑤𝑖

∩ 𝑅𝑤𝑘
≠ ∅. If a resource is shared then energy consumed by

this resource must be split among its users. Before we proceed
to formally define the cloud carbon accounting problem lets spend
some time to discuss the accounting principles defined by the GHG
Protocol.

2.1 The GHG Protocol
The Greenhouse Gas (GHG) Protocol [5] establishes comprehen-
sive global standardised frameworks to measure green house gas
emissions. It is the most wildly used GHG accounting standard.
Either the GHG Protocol or other organizations develop additional
guidance that build upon it. In particular, Carbon Trust, Global
e-Sustainability Initiative (GeSI) [6] developed ICT Sector Guidance
for the calculation of life-cycle GHG emissions for ICT. Chapter 4
in this document focuses on Cloud Computing and Data Center
Services with the proclaimed goal of defining how to allocate the
GHG emissions of a data center to its various services and clients.
Our approach is consistent with this guidance.



Towards Transparent and Trustworthy Cloud Carbon Accounting Woodstock ’18, June 03–05, 2018, Woodstock, NY

In simple terms, the guidance mandates that the totality of en-
ergy of the data center must be completely split across the tenants of
the data center. Note that for these tenants this energy is consid-
ered Scope 3, i.e., indirect use of energy1. We term this principle the
completeness property. In addition, the guidance defines several prin-
ciples governing the method to split the energy across the users of a
shared resource or service. In particular, the guidance distinguishes
between fixed and dynamic energy. Lastly, the guidance encourages
energy calculation methods specific to the actual service and style
of computation.

We summarize the principles as follows.

(1) All the data center emission must be allocated to the individ-
ual services (Completeness Principle).

(2) All IT devices must be allocated across the services.
(a) If a device supports more than one service, divide its allo-

cation using a consistent method
(b) IT equipment that is used to manage workloads for a

service should also be allocated to that service and its
users.

(c) IT equipment that serves as reserve capacity for a service,
should also be allocated to that service.

(d) Every device is fully allocated either directly or indirectly
to users.

(3) The selected allocation method should seek to separate the
fixed and variable emissions. The intent is to allocate the
fixed emissions based on the provisioned capacity and the
variable emissions based on the energy consumption of each
platform, customer, or device.

(4) Every service defines functional unit(s) which are being
used to partition the energy. Examples include: Transactions,
Number and size of volumes of storage, Number and size of
VMs and CPU utilization

The idea of ‘fixed’ vs. ‘dynamic’ energy is intended to separate
the portion of the energy that does not directly correlate with user
usage from the portion that correlates directly with user usage. For
example, take a single server that runs multiple VMs on behalf
of multiple tenants. Server idle power (where no workload runs)
can be as high as 50% of the total power draw of the server. An
allocation method of energy across the tenant VMs must treat
differently the server idle energy from the usage-based energy. Let
idle energy be denoted as 𝐸𝐼𝐷𝐿𝐸 . Note this is a fixed number for a
given server. 𝐸𝑡 − 𝐸𝐼𝐷𝐿𝐸 is the usage-based energy during a time
period 𝑡 . A common fair allocation method of energy to VMs will
be to split 𝐸𝐼𝐷𝐿𝐸 across the VMs in proportion to their size, and
split 𝐸𝑡 −𝐸𝐼𝐷𝐿𝐸 based on usage (weighted by size). Obviously, such
an allocation method is necessary since there is no way to directly
measure power used by each VM. For the usage based portion,
Machine Learning is often used to identify a set of counters (such
as vCPU utilization) and an energy prediction method based on the
counters. In the simplest case, vCPU is the only counter and linear
regression determines the linear fitting function. The guidance fall
short in considering different power states of servers. We refine
and generalize the method to account for those (deferred to future
publications).

1For definitions of Scope 1, 2 and 3 the reader is referred to [5].

We are now ready to describe our approach to address the cloud
carbon accounting challenge.

3 APPROACH
The Cloud Carbon Accounting (CCA) Problem is concerned with
attributing energy and carbon footprint to each one of the tenants
in a cloud environment. Note that here we restrict the discussion to
just the operations phase. Embodied emission of servers is outside
the scope of this work. For consistency with the guidance, the
completeness property must be satisfied, i.e., 𝐶𝐹𝑃𝐷𝐶 =

∑𝑛
1 𝐶𝐹𝑃𝑖 ,

where𝐶𝐹𝑃𝐷𝐶 is the total carbon footprint associated with the data
center, and𝐶𝐹𝑃𝑖 is the carbon footprint attributed to a single tenant.

Our approach is based on the concept of an energy attribution
graph. The energy attribution graph is direct and dynamic. A snap-
shot is depicted in Figure 1. The leaves of the direct graph are the IT
devices. An IT device is defined as a unit that is associated with di-
rect power meter (example: server, network device, storage device).
Each such device is associated with an allocation functions to split
the power it consumes among its users (where a user can be yet
another device, a service, or an end user). In some advanced cases
more than one allocation function is defined, factoring in, e.g., the
characteristics of the workload. Other logical constructs, may exist
and participate in the allocation process, such as a VM, a container,
a function, a transaction, a storage volume, and an Object (in an
object store), a volume, a block, etc. Such logical constructs are as-
signed a calculated energy allocation. Every IT device is allocated to
a service, a user, or a set of users and/or services. This is represented
in the figure as an edge directed from the device out. Services are
associated with a set of in-edges, and out-edges. There is an in-edge
for every device or service that this service uses. For example, a
server that is used in an IaaS service (See example in Section 3.1)
will have an edge that is directed from it to the IaaS Service. Out-
edges connect a service to all its users (other services or tenants).
Like with devices, every service defines an allocation function to
split its own energy. Note that a service is a composite logical con-
struct; it does not consume energy directly. Example of services
include a VM provisioning service, a Functions-as-a-Service, or an
Object Storage service. Note that in many cloud environments the
later two services will use the VM provisioning service. The energy
consumed by a service is calculated as the sum of all allocations
to it by the devices or other services it uses. The energy that is
consumed by a service (calculated) must be allocated in its entirety
across the users of the service (Completeness Principle). In other
words, assume labels on edges correspond to energy units. For each
node in the graph, the sum of energy units on its in-edges must
be equal to the sum of units on its out-edges. The sum of labels on
in-going edges for a tenant 𝑖 represent the 𝐸𝑖

𝐼𝑇
attributed to that

tenant. To get the total energy per tenant one still have to multiply
𝐸𝑖
𝐼𝑇

by the PUE (which is a global number for the entire data center).
𝐶𝐹𝑃𝑖 is given by 𝐸𝑖

𝐼𝑇
×𝑃𝑈𝐸×𝐶𝐼 . In advanced cases,𝐶𝐼 is a modeled

as a time series. The method can be easily generalized to account
for a cloud comprising multiple data centers.

The service (or device) energy allocation method must be de-
signed carefully. For example, service reserved capacity (which is
not used by any user at a given time period) must be factored in.
The overhead of management nodes must be factored in. Tenant



Woodstock ’18, June 03–05, 2018, Woodstock, NY Tamar Eilam

Figure 1: Energy Attribution Graph

Service Level Agreements (SLA) and different key usage metrics
will play role in how the energy allocation is calculated.

3.1 Example: Infrastructure-as-Service (IaaS)
Consider an IaaS service 𝑆 that provisions Virtual Machines (VMs)
on a pool of shared servers on behalf of a set of users (tenants). For
simplicity, let’s assume that VM types only vary by the number of
cores assigned to them. Let 𝑆 (𝑉 ) be the number of cores assigned to
a VM𝑉 . Further, the servicemaintains two server pools: Active pool,
where any server in the pool hosts at least one VM, and StandBy
pool, where servers are not hosting any VMs, but are ready to serve
new requests. Further, the service management software, such as
a VM scheduler, runs on a separate set of servers. The following
classes of energy can be defined:

• 𝐸𝑚𝑛𝑔 = The total energy consumed by the pool of servers
running the service management software.

• 𝐸𝑠𝑡𝑎𝑛𝑑𝑏𝑦 = The total energy consumed by all servers in the
standby pool (note that this is all idle power).

• 𝐸𝑖𝑑𝑙𝑒 = The total idle power of all servers in the active pool
(note, the 𝐸𝑖𝑑𝑙𝑒 may differ across servers based on, e.g., their
type, but it is a fixed number for a given server).

• 𝐸𝑀𝑢𝑠𝑒 = 𝐸𝑀 −𝐸𝑀
𝑖𝑑𝑙𝑒

, where for a server𝑀 , 𝐸𝑀 is the measured
energy that 𝑀 consumed, and 𝐸𝑀

𝑖𝑑𝑙𝑒
is the energy that 𝑀

consumes when in idle state (constant per server)
Now for usage metrics let us define
• 𝐾𝑠 = size of the VM (i.e., number of vCPUs in this example)
• 𝐾𝑢 = the average utilization of the VM (averaged over all its
vCPUs).

The allocation method 𝑓 (𝑉𝑖 ) is defined as follows for a VM 𝑉𝑖
running on a server𝑀 , with usage energy of 𝐸𝑀𝑢𝑠𝑒 .

𝑓 (𝑉𝑖 ) = (6)
𝐾𝑠 (𝑉𝑖 )∑

𝑎𝑙𝑙 𝑉𝑀𝑠 𝐾𝑠 (𝑉𝑗 )
× (𝐸𝑚𝑛𝑔 + 𝐸𝑠𝑡𝑎𝑛𝑑𝑏𝑦 + 𝐸𝑖𝑑𝑙𝑒 )+ (7)

𝐾𝑠 (𝑉𝑖 )𝐾𝑢 (𝑉𝑖 )∑
𝑉𝑀 ∈𝑀 𝐾𝑠 (𝑉𝑗 )𝐾𝑢 (𝑉𝑗 )

× 𝐸𝑀𝑢𝑠𝑒 (8)

Note that the utilization of the VM relative to other VMs running
on the same server𝑀 is used in order to split the usage portion of the
energy 𝐸𝑀𝑢𝑠𝑒 of that server across the VMs running on it (𝑉𝑀 ∈ 𝑀),
but the rest of the energy of the service (𝐸𝑚𝑛𝑔 + 𝐸𝑠𝑡𝑎𝑛𝑑𝑏𝑦 + 𝐸𝑖𝑑𝑙𝑒 )
is split across all VMs based on their size. Considering this IaaS

Figure 2: UI of CARE

service only, the completeness property is satisfied, as it is easily
verifiable that

∑
𝑎𝑙𝑙 𝑉𝑀𝑠 𝑓 (𝑉𝑖 ) = 𝐸𝐼𝑇 (𝑆).

To calculate a tenant energy we add up the energy associated
with all VMs provisioned on its behalf. I.e., 𝐸𝑖

𝐼𝑇
=

∑
𝑉 ∈𝑇𝑖 𝑓 (𝑉 ),

and 𝐶𝐹𝑃𝑖 = 𝐸𝑖𝐼𝑇 × 𝑃𝑈𝐸 ×𝐶𝐼 . An alternative calculation will leave
𝐸𝑚𝑛𝑔 and 𝐸𝑠𝑡𝑎𝑛𝑑𝑏𝑦 out of the calculation of 𝑓 (𝑉𝑖 ), to calculate
a strict 𝐸𝑖

𝑝𝑎𝑦𝑙𝑜𝑎𝑑
and then multiple by the Cloud Power Usage

Effectiveness (CPUE) to essentially get the same result 𝐶𝐹𝑃𝑖 =

𝐸𝑖
𝑝𝑎𝑦𝑙𝑜𝑎𝑑

×𝐶𝑃𝑈𝐸 ×𝐶𝐼 .
Note that in more realistic use cases, we may want to allocate

the reserve capacity based on tenant SLAs, specifically, the level
of redundancy they require. In general, SLAs play a key role here.
There exists a trade off between performance, availability and car-
bon footprint. Carbon efficiency should be estimated with respect
to the non-functional requirements expected.

3.1.1 Implementation. To date, we have implemented the method
focusing first on an IaaS service to dynamically provision VMs on
behalf of tenants on a shared pool of resources. The implementation
collects the following time series: VM provisioning requests includ-
ing their sizes, placement of VMs on servers, respective utilization,
and server power consumption. The implementation calculates for
each VM the energy and carbon footprint with choice of sampling
frequency and averaging intervals. We are actively engaging with
a selected set of users to evaluate the method. A screenshot of the
tool showing the calculations per VM is shown below.

4 DISCUSSION
In this extended abstract, we have discussed the importance of
a transparent method to quantify carbon footprint per tenant in
modern cloud environments. Such a method can be used for re-
porting of carbon footprint by business users, for comparison of
the efficiencies obtained by different cloud environments, and as a
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baseline for further optimization. We proposed an approach that
is consistent with the GHG protocol ICT guidance document [6].
Our approach allows for varying degrees of resources sharing, and
abstraction layers (e.g., IaaS, PaaS). A lot more research is needed
to design accurate methods to fairly split the energy of a shared
resource or service. Related scientific works, focused on the en-
ergy consumption of Servers (e.g., [23]), VMs (e.g., [18]), containers
(e.g., [13, 14, 31]), or applications (e.g., [13, 20]), but did not factor in
consistency with the GHG protocol and the special characteristics
of modern dynamic and multi-tenant cloud environments.

A large body of scientific work is also focused on reduction of
energy and carbon footprint of computation. This work can be
roughly divided into the following categories: (1) design of special-
ized hardware (e.g., [12]); (2) energy aware cloud resource man-
agement (e.g., [9–11, 16, 24, 26, 26, 29, 30, 30]); (3) AI efficiency
(e.g., [21]); and, (4) data center efficiency focusing on cooling and
power distribution optimization (e.g., [22, 32]).

We posit that to get to the vision of a carbon performant (sus-
tainable) cloud one must employ quantification techniques first to
establish a baseline, and a set of controllers to optimize the carbon
footprint at every level of the cloud stack: facility, systems, soft-
ware, and management systems. Our team is working on such as
architecture and controllers for power management, scheduling
and dispatching, and vertical scaling. As more workloads move to
the cloud and with the looming threat of climate change this goal
is more important than ever.
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