
A provider agnostic approach to multi-cloud
orchestration

Daniel Baur
Institute of Information Resource Management

Ulm University
Ulm, Germany

daniel.baur@uni-ulm.de

Abstract
Orchestrating workloads in a multi-cloud environment is
a challenging task, as one needs to overcome vendor lock-
in and select a matching offer from a large and heteroge-
nous market. Yet, existing cloud management tools rely on
provider dependent models and manual selection, making
runtime changes to the selection in case of provider fail-
ures impossible. We propose a provider agnostic, workload
centric approach to multi-cloud orchestration relying on
a constraint language that allows automatic selection and
runtime management of cloud resources overcoming e.g.
provider failures.

CCS Concepts • Computer systems organization →
Cloud computing;

Keywords cloud computing, multi-cloud, orchestration
ACM Reference Format:
Daniel Baur. 2018. A provider agnostic approach to multi-cloud
orchestration. In Proceedings of Middleware Doct Symposium. ACM,
NewYork, NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Problem Statement
Cloud computing and its computing as a utility paradigm
offers on-demand resources to its users following a pay-as-
you-go approach. The ongoing commercialization of cloud
computing lead to a vast provider landscape offering a highly
heterogeneous set of services that are differentiated by us-
ing different service models [13] like IaaS, PaaS or SaaS,
their access level (private or public), individual features and
the (programming) interface they provide. This increasingly
complex cloud market makes it difficult to select a matching
offer for the workload the user wants to execute. This is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Middleware Doct Symposium, December 2018, Rennes, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

aggravated by the fact that once an offer has been selected
missing interoperability between providers causes vendor
lock-in making it difficult to reevaluate the decision. Fur-
thermore, recent outages of providers [11] have shown that
only relying on a single provider may have negative im-
pacts on the availability of the executed service [15]. It is
therefore desirable to achieve an architecture that i) allows
the user to acquire resources across multiple providers in a
seamless way, ii) deploys a distributed workload automat-
ically on those resources and iii) is capable to manage the
workload and the underlying resources during runtime. Ex-
isting tools apply model driven engineering to solve this
problem. The user describes his application using a domain
specific modeling language that is enacted by an orchestra-
tor. Yet, these tools have shortcomings [4] that we aim to
overcome with our approach. Most tools rely on provider
dependent models, meaning that the user has to manually
select a matching offer and provide the identifiers together
with cloud specific information like firewall configurations
or virtual network management at design time. This requires
the designer not only to have a complete overview of the
cloud market, but also to have knowledge about particulari-
ties of specific providers. This counteracts portability, as the
decision for an offer can not be revised (automatically) at run-
time to e.g. react on provider failures. Additionally, existing
tools follow a deployment centric view, where an applica-
tion is decomposed to several components that are hosted
on the described infrastructure. However, typical use cases
like data processing require multiple levels as the workload
is executed within frameworks managing the underlying
resources and may change during runtime as new workloads
are submitted to the system.

2 Related Work
The Topology and Orchestration Specification for Cloud
Applications (TOSCA) [17] is an OASIS standard for describ-
ing topologies consisting of a (virtual) infrastructure and
hosted applications. While being generic enough to support
various concepts, the concrete realization is left to the imple-
mentation of the orchestrator. Cloudify1 e.g. heavily relies
on custom types for its TOSCA implementation. As these

1https://cloudify.co/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Middleware Doct Symposium, December 2018, Rennes, France Daniel Baur

types directly reference a cloud provider, the initial man-
ual selection can not be changed at runtime. Alien4Cloud2
on the other hand relies on TOSCA’s normative types and
the concept of abstract and concrete templates. The abstract
template defines requirements that need to be fulfilled by
the concrete type. While this achieves portability across
providers, the selection of the concrete provider is a man-
ual process at design time that can not be changed during
runtime. A similar approach is taken by [1], that converts
abstract TOSCA templates to concrete Cloud Application
Management for Platforms (CAMP) [9] plans. The approach
by [6] also uses abstract templates that are refined during
the deployment process, but not during runtime.

Roboconf [18] and Occopus [14] both use a proprietary do-
main specific language that is not provider agnostic and thus
can not achieve portability across providers. In contrast to
previous approaches [10] relies on models@runtime, allow-
ing it to reflect changes in the model to the running system
by an adaptation engine. However, their model is only partly
provider agnostic as it still requires manual interaction e.g.
to change the provider.
Similar to the approach, presented in this paper, Google

Borg [21] and Apache Mesos [12] follow an application-
centric view. While Mesos itself handles only resource man-
agement, frameworks like Apache Aurora3 or Marathon4
offer deployment capabilities. However, both are designed
to share a static resource pool across multiple users, while
our approach manages a dynamic set of resources across
multiple providers.

3 Approach
To overcome the prior depicted shortcomings our approach
builds upon three main concepts: i) a provider agnostic mod-
eling language that allows the user to describe the resource
demand without referencing a specific provider, ii) a work-
load centric description that allows us to automatically derive
the required infrastructure to host the workload, iii) a run-
time management system relying on the provider agnostic
model that is capable to recover from provider errors and
failures. An overview of our approach is given in Figure 1.

Provider agnostic To achieve a provider agnostic model,
we separate the provider information from the workload that
needs execution. Our provider model contains the type of the
provider respectively the API it provides and authentication
information. Using this information we repeatably query
the provider to discover his resource offers ensuring up-to-
dateness. We depict eligible combinations of those offers and
their properties, e.g. the computational resources or its (geo-
graphical) location by node candidates. The user may also
manually register additional node candidates to represent

2http://alien4cloud.github.io
3http://aurora.apache.org/
4https://mesosphere.github.io/marathon/

Provider Model

Workload Model

Workload

Requirements

Operation

Application
Owner

Provider
Management

Orchestration

Deployment

Register
Providers

Discover
Offers

Allocate
Resources

Node
Candidates

Providers

Request
Resources

Matchmaking

Request
offer

Best
Offer

Abstraction Layer

Allocated
Resources

M
on

ito
rin

g

Figure 1. Overview of the Cloudiator approach

already existing nodes. To be able to select matching node
candidates, we provide a constraint language [3] that allows
the user to express requirements for his workload by refer-
encing the properties of the node candidates. The constraints
nodes->forAll(hardware.cores >= 4) and nodes->size() >= 2 will
e.g. express that this workload requires at least two resources
with four CPU cores. To break ties we allow the user to spec-
ify an optimization criteria, e.g. minimize(nodes.sum(price))
that will minimize the price of all selected nodes. Using the
node candidates and the requirements expressed by the user
we generate and solve a constraint satisfaction problem (CSP)
and allocate the selected resources and deploy the workload.
We accompany the constraint language with an abstraction
layer, hiding semantic and syntactical differences across dif-
ferent providers.

Workload Centric In contrast to other approaches, we
propose a workload centric view on cloud orchestration.
Instead of separating the application into individual com-
ponents that are hosted on resources, the user depicts a
workload and its requirements. This approach keeps the de-
scription portable across different cloud service levels and en-
vironments and also allows us to support runtime behaviors
like continuously running services or repetitively running
batch jobs. The workload is described as Jobs that act as a
logical group of Tasks describing the actual workload. A Task
can have different Behaviors specifying if it depicts a con-
tinuously running service or a (repetitively) running batch
job. Each task exposes Interfaces, depicting how it can be ex-
ecuted in different environments. Tasks may reference other
Tasks to depict Communication dependencies. Each Task may
express multiple constraints and an optimization criteria (cf.
previous paragraph) expressing its resource demand that
can be fulfilled by one or multiple resources. Additionally,
each Task expresses runtime requirements, either explicitly
defined by the user or implicitly defined by the exported
Interface. We e.g. support a SparkInterface that requires an
Apache Spark5 cluster for execution. Wematch these require-
ments with the runtime capabilities expressed by each node
candidate the providers offer. In addition, we host a soft-
ware catalogue, used to enrich the provided environments
5http://spark.apache.org/

A provider agnostic approach to multi-cloud orchestration Middleware Doct Symposium, December 2018, Rennes, France

of node candidates. The runtime of the SparkInterface thus
can be either fulfilled e.g. by a PaaS offer directly offering an
Apache Spark cluster, by an user registered Spark installation
or by an IaaS offer where we install Apache Spark using our
software catalogue.

Runtime Management and Recovery Our experience
shows, that deploying distributed workloads in a cross-cloud
environment is error prone. Not only may the cloud provider
itself fail, but also network connectivity between providers,
the deployed applications or cloud specific details like quo-
tas may hinder the deployment during runtime. To be able
to react on errors at runtime, we continuously monitor the
providers, the allocated resources and the running work-
loads [8]. If we detect errors, we try to categorize the fail-
ure by its cause analyzing e.g. the return code issued by
the provider’s API. Based on these categories we mark the
affected entities as failed. Failures may either affect the avail-
able node candidates (e.g. if a provider or an availability zone
fails all relating offers are removed), the running nodes and
workloads or both. The same mechanism is used to represent
changes in the models that the user may submit at any time.
Should the user e.g. update a specific workload, all instances
relating to the workload will be marked as failed. Whenever
a running resource is marked as failed, a new matchmaking
process is triggered to derive a new solution. As the exist-
ing solution may only be partly invalidated, we import the
existing solution into the matchmaking process thus prefer-
ring new solutions that reuse still running resources. Finally,
the new solution will be applied by acquiring the resource
differences and deploying the workload.

4 Implementation
We implement our approach with the Cloudiator6 [5, 7]
framework using the architecture depicted in Figure 2. As
unification of an heterogeneous environment is a complex
task, we rely on amicro-service architecture to be able to plug
in additional features without affecting existing components
and achieve loose-coupling of the different services via a
message queue. For each architectural level, we typically use
a coordination agent and worker agents executing the tasks.
For resource and provider management level this e.g. means
that the Node Agent is responsible for the coordination of re-
source allocation, while the PaaS Resource Agent and the IaaS
Resource Agents are responsible for allocating the resources.
We furthermore allow each worker agent to scale, mean-
ing that different IaaS Resource Agents could handle different
providers. Decoupling the different functionalities (especially
the deployment from the resource management layer) also
ensures that they can be used separately, e.g. allowing the
user to only acquire virtual machines from a set of registered
providers. Cloudiator offers multiple interfaces with which
the user may interact. Based on his preferences he may either

6https://github.com/cloudiator

Messaging

Kafka

Broker

Monitoring

Monitoring

Orchestration

Resource Management

Node

Agent
Scheduler

Resource

Broker

User Mgmt

User

Agent

Provider Management

Discovery

Agent

IaaS Resource

Agent

PAAS Resource

Agent

BYON

Agent

Logging

Logstash Kibana
Elastic

Search

Modelling Tools

REST Endpoint

Deployment

Spark

Agent

Docker

Agent

Script

Agent

Job

Agent

PAAS

Agent

Environment

Agent

Persistence

Monitoring

Store

Process

Store

Discovery

Strore

Node

Store

Job

Store

User

Store

Environment

Repository

YAML

Syntax

YAML

Parser

AdapterWeb

UI

Figure 2. Architecture of Cloudiator

express the model using a YAML syntax that is parsed and
validated and transmitted to the REST endpoint by an adapter
or he can directly access the REST interface using a CRUD
based web interface. The REST interface is described using
the OpenAPI-Specification7 allowing easy integration with
different systems. For the development of the abstraction
layer supporting multiple clouds, we rely on Apache jclouds8.
However, as we identified multiple shortcomings [2] we pro-
vide a wrapper implementation overcoming those issues. We
have recently enriched our constraint language by relying on
the Object Constraint Language (OCL) [16] achieving higher
expressiveness. We rely on the EMF OCL9 implementation
to parse the OCL constraints. For the final solving of the CSP
we rely on the Choco Solver [19].

5 Evaluation
The evaluation of our approach is two-fold. First, we pro-
vide a quantitative evaluation proofing that our approach is
feasible. This part of the evaluation mainly targets the match-
making mechanism, showing that it is capable of solving the
resulting CSP in reasonable time. Initial results [3] show that
it is capable to select offers even from a large offer space of
multiple providers. Other metrics will include the recovery
time in case of errors and the overall deployment time using
our approach. While these metrics largely depend on exter-
nal properties (e.g. the resource start time of providers) we
use these metrics to evaluate the overhead introduced by our
approach. The second part will provide a qualitative evalua-
tion of our approach, showing the practical applicability and
generality of our approach using multiple case studies. To
represent the functionalities of our approach, the case stud-
ies should span different application domains, be deployed
on at least four different providers across different services
levels. While our Cloudiator framework was already suc-
cessfully used to deploy multiple applications ranging from
typical three-tier web services to more complex flight sched-
uling or MPI-based Computational Fluid Dynamics (CFD)

7https://www.openapis.org/
8https://jclouds.apache.org/
9https://wiki.eclipse.org/OCL/OCLinEcore

Middleware Doct Symposium, December 2018, Rennes, France Daniel Baur

simulations we have yet to evaluate deployments spanning
over multiple different environments and large scale deploy-
ments. To evaluate the runtime recovery, we plan to extend
our deployment and orchestration layer with the capabil-
ity to induce artificial errors and use it to evaluate multiple
recovery strategies, e.g. a strategy that prefers moving to
different providers against strategies that prefer recovering
the application at the initially selected provider.

6 Conclusion and Future Work
We have presented an approach for workload management
in a heterogenous environment using resources provided by
multiple providers across different service levels. In contrast
to existing solutions, our approach applies a workload centric
view that is capable to overcome vendor lock-in and thus en-
ables runtime management overcoming failure of providers.
While our approach is theoretically able to abstract the cloud
environment, requiringminimal knowledge of the user about
single providers the verbosity of providers’ APIs sometimes
hinders practical applicability. Especially when it comes to
meta-data information about the offers, manual or automatic
enrichment from other sources is required. Similar the in-
terchangeability of workload descriptions between different
service levels would be a desired feature that requires future
research. Our generic approach and flexible architecture to-
gether with an extensive API giving access to a provider inde-
pendent orchestration layer enables other research exploring
the behavior of systems in a distributed cloud environment,
e.g. availability of distributed database systems [20].

Acknowledgements
This work is done under the supervision of Stefan Wes-
ner. The author would like to thank Jörg Domaschka and
Daniel Seybold for their support. The research leading to
these results has received funding from the EC’s Framework
Program HORIZON 2020 under grant agreement numbers
731664 (MELODIC) and 732258 (CloudPerfect).

References
[1] K. Alexander, C. Lee, E. Kim, and S. Helal. 2017. Enabling End-to-

End Orchestration of Multi-Cloud Applications. IEEE Access 5 (2017),
18862–18875.

[2] Daniel Baur and Jörg Domaschka. 2016. Experiences from Building a
Cross-cloud Orchestration Tool. In 3rd Workshop on CrossCloud Infras-
tructures & Platforms.

[3] Daniel Baur, Daniel Seybold, Frank Griesinger, Hynek Masata, and
Jörg Domaschka. 2018. A Provider-Agnostic Approach to Multi-cloud
Orchestration Using a Constraint Language. In 2018 18th IEEE/ACM
CCGRID. 173–182.

[4] Daniel Baur, Daniel Seybold, Frank Griesinger, Athanasios Tsitsipas,
Christopher B Hauser, and Jörg Domaschka. 2015. Cloud Orchestration
Features: Are Tools Fit for Purpose?. In UCC.

[5] Daniel Baur, Stefan Wesner, and Jörg Domaschka. 2014. Towards a
model-based execution-ware for deploying multi-cloud applications.
In European Conference on Service-Oriented and Cloud Computing.
Springer, 124–138.

[6] Miguel Caballer, Sahdev Zala, Álvaro López García, Germán Moltó,
Pablo Orviz Fernández, and Mathieu Velten. 2018. Orchestrating Com-
plex Application Architectures in Heterogeneous Clouds. Journal of
Grid Computing 16, 1 (01 Mar 2018), 3–18.

[7] Jörg Domaschka, Daniel Baur, Daniel Seybold, and Frank Griesinger.
2015. Cloudiator: a cross-cloud, multi-tenant deployment and runtime
engine. In 9th Symposium and Summer School on Service-Oriented
Computing.

[8] Jörg Domaschka, Daniel Seybold, Frank Griesinger, and Daniel Baur.
2015. Axe: a novel approach for generic, flexible, and comprehensive
monitoring and adaptation of cross-cloud applications. In European
Conference on Service-Oriented and Cloud Computing. Springer, 184–
196.

[9] Jacques Durand, Adrian Otto, Gilbert Pilz, and Tom Rutt. 2014. Cloud
Application Management for Platforms Version 1.1. OASIS (2014).

[10] Nicolas Ferry, Franck Chauvel, Hui Song, Alessandro Rossini, Maksym
Lushpenko, and Arnor Solberg. 2018. CloudMF: Model-Driven Man-
agement of Multi-Cloud Applications. ACM Transactions on Internet
Technology (TOIT) 18, 2 (2018), 16.

[11] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto, Agung Laksono,
Anang D Satria, Jeffry Adityatama, and Kurnia J Eliazar. 2016. Why
does the cloud stop computing?: Lessons from hundreds of service
outages. In Proceedings of the Seventh ACM Symposium on Cloud Com-
puting. ACM, 1–16.

[12] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A Platform for Fine-grained Resource Sharing in the Data Cen-
ter. In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation (NSDI’11). USENIX Association, Berkeley,
CA, USA, 295–308.

[13] Steffen Kächele, Christian Spann, Franz J. Hauck, and Jörg Domaschka.
2013. Beyond IaaS and PaaS: An Extended Cloud Taxonomy for Com-
putation, Storage and Networking. In Proceedings of the 2013 IEEE/ACM
6th International Conference on Utility and Cloud Computing (UCC ’13).
IEEE Computer Society, Washington, DC, USA, 75–82.

[14] József Kovács and Péter Kacsuk. 2018. Occopus: a Multi-Cloud Or-
chestrator to Deploy and Manage Complex Scientific Infrastructures.
Journal of Grid Computing 16, 1 (01 Mar 2018), 19–37.

[15] R. Moreno-Vozmediano, R. S. Montero, E. Huedo, and I. M. Llorente.
2018. Orchestrating the Deployment of High Availability Services on
Multi-zone and Multi-cloud Scenarios. Journal of Grid Computing 16,
1 (01 Mar 2018), 39–53.

[16] Object Management Group (OMG). 2014. Object Constraint Language
Specification, Version 2.4.

[17] Derek Palma and Thomas Spatzier. 2013. Topology and orchestration
specification for cloud applications (TOSCA). OASIS (2013).

[18] L. M. Pham, A. Tchana, D. Donsez, N. de Palma, V. Zurczak, and P.
Gibello. 2015. Roboconf: A Hybrid Cloud Orchestrator to Deploy
Complex Applications. In 2015 IEEE 8th International Conference on
Cloud Computing. 365–372.

[19] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. 2017.
Choco Documentation. TASC - LS2N CNRS UMR 6241, COSLING S.A.S.
http://www.choco-solver.org

[20] Daniel Seybold, Christopher B Hauser, Simon Volpert, and Jörg Do-
maschka. 2017. Gibbon: An Availability Evaluation Framework for
Distributed Databases. In OTM.

[21] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Op-
penheimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster
management at Google with Borg. In Proceedings of the European
Conference on Computer Systems (EuroSys). Bordeaux, France.

http://www.choco-solver.org

	Abstract
	1 Problem Statement
	2 Related Work
	3 Approach
	4 Implementation
	5 Evaluation
	6 Conclusion and Future Work
	References

