
Dynamic Management of Distributed Stream Processing
Pipelines in Fog Computing Infrastructures

Patrick Wiener
FZI Research Center for Information Technology

Karlsruhe, Germany
wiener@fzi.de

Abstract
While todays’ stream processing applications are typically deployed
in the cloud, newly arising use cases in the context of Internet of
Things (IoT) often require low-latency analytics to derive time-
sensitive actions. A common approach, referred to as fog computing,
shifts the focus away from the cloud by o�oading speci�c parts
of the analytical pipelines in closer proximity of the spatially dis-
tributed devices at the edge. However, this requires mechanisms for
context-aware deployment, scale, or monitoring both in the cloud as
well as the fog landscape. This work explores the challenges with
respect to dynamically managing distributed stream processing
pipelines in heterogeneous fog computing infrastructures.

CCS Concepts • Computer systems organization → Fog com-
puting;

Keywords fog computing; stream processing pipelines

1 Introduction
The real value of the IoT in domains, such as smart city, manufac-
turing automation, or transport service management, is not derived
from data, but from insights that facilitate real-time actions that
increase asset e�ciency, reliability and utilization. But, to actually
save time and money with IoT, data insights have to come from
somewhere – typically centralized, scalable cloud computing plat-
forms tailored for the hardware, connectivity and data management
needs of these domains. Thereby, the data�ow approach is a popu-
lar programming paradigm to model these speci�c analyses [5, 8]
as pipelines composed of several individual processing elements
that are typically interconnected by a publish-subscribe messag-
ing system. However, for scenarios that require very low latency,
are limited in available bandwidth, or where privacy is a limiting
factor, there are some inevitable downsides to solely deploying
these pipelines in the cloud. Consequently, an obvious approach
is to extend the cloud to move certain computation to the edge to
overcome these issues, while still having access to scalable, in�nite
resources, which is commonly referred to as fog computing [3]. This
decentralized computing paradigm shifts the focus away from the
cloud by o�oading speci�c processing elements in closer proximity
of the spatially distributed devices, analogous to the "code to data"

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or
a fee. Request permissions from permissions@acm.org.
Middleware’18, Rennes, France
© 2018 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

principle in big data. Certainly, leveraging software container tech-
nology (e.g. Docker1) and the surrounding ecosystem for managing
container-based clusters (e.g. Kubernetes2), provide a natural �t
for (to some extent) resource-limited fog computing infrastructures
(FCI) due to the minimal overhead [1, 6]. Still, there is little adoption
of the fog computing paradigm in practice [2]. One reason might
be the shortcoming of managing these hierarchical and heteroge-
neous FCI. Thereby, it is crucial to have context-aware mechanisms
that enable a dynamic deployment of stream processing pipelines
(SPP) [8] based on varying capabilities of dedicated compute re-
sources as well as changing overall pipeline requirements.

The aim of this work is to examine the following central research
questions: (RQ1) How can FCI and their entities be modelled?
(RQ2) How can dynamic (context-aware) deployments of SPP be
achieved? (RQ3) How can individual processing elements of SPP
be moved (inter-, intra-layer) or scaled-up/down (intra-node) when
the context (capabilities, requirements) changes?

2 Motivating Use Case
The constant growth of the e-commerce business further increases
the tra�c density in urban areas caused by frequent transport ser-
vice provider order delivery, thus, introducing various issues for
cities, e.g., due to noise, emissions, or general tra�c level. To ad-
dress these problems, electri�ed vehicular delivery robots equipped
with various sensors (e.g. laser scanner) and actuators (e.g. mo-
tors) can be used to pick up packages at de�ned packing stations
in order to autonomously deliver them to customers. On the one
hand, a centralized approach is necessary for global monitoring and
to perform big data analytics. On the other hand, a decentralized
decision-making in terms of edge analytics is helpful to increase the
overall responsiveness and robustness in case of latency-sensitive
analyses, network outages or privacy implications. Consequently,
fog computing can be bene�cial aiming to roll-out de�ned dis-
tributed SPP on a hierarchical infrastructure (cloud, intermediary,
edge) to perform dedicated monitoring and analytical tasks.

3 Approach
Generally, a FCI consists of a multi-layer hierarchical infrastructure
(see Figure 1) of heterogeneous compute nodes along the cloud-edge
continuum typically implemented leveraging container technolo-
gies, where there exists an intermediary layer (often referred to as
fog), that provides additional processing power in closer proximity
to the edge as compared to the cloud [2]. At the edge, nodes are
having access to sensors and actuators to retrieve data or place
actions with respect to the real-world. The cloud functions as a
centralized scalable backbone for all sublayers, e.g., to store ana-
lyzed and aggregated data, to run big data analytics or to provide

1h�ps://www.docker.com/
2h�ps://kubernetes.io/

https://www.docker.com/
https://kubernetes.io/

Middleware’18, December 2018, Rennes, France Patrick Wiener

Cluster Management

CPU

OS

MEM DISC

Container Engine

N
od

e
C

on
tr

ol
le

r
C

on
ta

in
er

Edge
local

Cloud
global

Sensors/
Actuators

JVM

Sources SinksProcessing Elements (PE)

JVM Flink
Python

Intermediary
regional

P
E
 C

on
ta

in
er

P
E
 C

on
ta

in
er

Other PE Container

Messaging
Dynamic PE provisioning

PE Container

PE Container Registry

node

Figure 1. Dynamic management of distributed stream processing
pipelines (SPP) in fog computing infrastructures

adequate compute resources for certain processing elements of
the SPP . Individual processing elements can be realized in a multi-
tude of programming languages and frameworks (e.g. Java, Apache
Flink3, Python), each performing a dedicated task and exchanging
their results in a publish-subscribe based messaging approach. The
semantic description of each element is used in order to perform
reasoning on the typically user-de�ned SPP identifying suitable
connections. Additionally, each element and the overall pipeline
speci�es infrastructural requirements, e.g., hardware related (CPU,
Mem, Disc) as well as various other extensible user-de�ned require-
ments, e.g., privacy-zones. Other than that, the infrastructure itself
is semantically described thus providing useful information about
node capabilities. Both, requirements and capabilities can be ex-
tended and adapted in a �exible manner during runtime according
to the given context (RQ1).

On this basis, we derive the concept of a node controller that runs
on every node in the cluster and is responsible (1) for watching for
context-changes, e.g., topological changes due to intermediary node
failure or preemption policies, (2) for triggering the re-deployment
of a processing element if central cluster manager is not available
due to connectivity issues, and (3) for resizing a speci�c processing
element. Thus, every compute layer provides access to relevant
snapshots of the central container registry, that is used for caching
images to reduce network tra�c (RQ2).

Lastly, to move a processing element either horizontally (intra-
layer) or vertically (inter-layer) the respective node controller needs
to checkpoint and restore the containers state on another match-
ing node. Also, pre-deployed containers can be scaled-up/down
(intra-node), e.g., when hardware requirements or other contextual
information change during runtime as shown in the projection of
the intermediary node in Figure 1 (RQ3).

3h�ps://flink.apache.org/

4 Related Work
In [5] a distributed data�ow programming paradigm is introduced
and implemented by extending Node-RED4. Thereby, processing
pipelines are executed on FCI based on static node capabilities
and de�ned constraints. In [9] Kubernetes label feature is used to
provide static node metadata (e.g. hardware resources, location) in
order to appropriately deploy containers on suitable nodes. In [10]
a framework for dynamic resource provisioning and automated
container-based application deployment is proposed, presenting
a more �ne-grained description of requirements including prior-
itization to enable preemption as well as privacy constraints in
terms of the actual placement in the infrastructure hierarchy. A
container-based architecture for supporting autonomic data stream
processing applications on FCI is shown in [4], yet only exploiting
native Docker features to scale and migrate application containers.

Overall, the abovementioned approaches are not context-aware
such that they do not account for dynamism in changes of the
environment. Additionally, they neglect relevant dependencies and
requirements of the holistic SPP , and do not allow for higher level
reasoning. The closest related work is [7] where a context-aware
software framework for management of resources and service pro-
visioning based on topology changes in FCI is proposed, mainly
focusing on failover and handover management.

5 Conclusion
The aim of this work is to examine how to dynamically man-
age distributed stream processing pipelines that support context-
awareness in heterogeneous fog computing infrastructures. The
results will be implemented and intensively evaluated in the pre-
sented use case in the course of a collaborative research project.

References
[1] Paolo Bellavista and Alessandro Zanni. 2017. Feasibility of Fog Computing

Deployment based on Docker Containerization over RaspberryPi. In Proc. of the
18th Int. Conf. on Distributed Computing and Networking - ICDCN ’17. 1–10.

[2] David Bermbach, Frank Pallas, David Garc, Ronen Kat, and Stefan Tai. 2017. A
Research Perspective on Fog Computing. Research Paper (2017).

[3] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and Its Role in the Internet of Things. Proc. of the �rst edition of the
MCC workshop on Mobile cloud computing (2012), 13–16.

[4] Antonio Brogi, Gabriele Mencagli, Davide Neri, Jacopo Soldani, and Massimo
Torquati. 2018. Container-Based Support for Autonomic Data Stream Processing
Through the Fog. Euro-Par 2017: Parallel Processing Workshops (2018), 17—-28.

[5] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C.M. Leung. 2015.
Developing IoT applications in the Fog: A Distributed Data�ow approach. In
Proc. - 2015 5th Int. Conf. on the Internet of Things, IoT 2015. IEEE, 155–162.

[6] Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd Bazli Ab Karim,
Wong Ming Tat, Sharipah Setapa, Jing Yuan Luke, and Ong Hong Hoe. 2016.
Evaluation of Docker as Edge computing platform. In ICOS 2015 - 2015 IEEE Conf.
on Open Systems. IEEE, 130–135.

[7] Saša Pešić, Milenko Tošić, Ognjen Iković, Mirjana Ivanović, Miloš Radovanović,
and Dragan Bošković. 2017. Context aware resource and service provisioning
management in fog computing systems. Studies in Computational Intelligence
737 (Oct 2017), 213–223. h�p://link.springer.com/10.1007/978-3-319-66379-1

[8] Dominik Riemer, Ljiljana Stojanovic, and Nenad Stojanovic. 2014. SEPP:
Semantics-based management of fast data streams. In Proc. - IEEE 7th Int. Conf.
on Service-Oriented Computing and Applications, SOCA 2014. IEEE, 113–118.

[9] Cecil Wöbker, Andreas Seitz, Harald Mueller, and Bernd Bruegge. 2018. Foger-
netes: Deployment and management of fog computing applications. In IEEE/IFIP
Network Operations and Management Symposium: Cognitive Management in a
Cyber World, NOMS 2018. IEEE, 1–7.

[10] Emre Yigitoglu, Mohamed Mohamed, Ling Liu, and Heiko Ludwig. 2017. Foggy:
A Framework for Continuous Automated IoT Application Deployment in Fog
Computing. In Proc. - 2017 IEEE 6th Int. Conf. on AI and Mobile Services, AIMS
2017. 38–45.

4h�ps://nodered.org/

https://flink.apache.org/
http://link.springer.com/10.1007/978-3-319-66379-1
https://nodered.org/

	Abstract
	1 Introduction
	2 Motivating Use Case
	3 Approach
	4 Related Work
	5 Conclusion
	References

