
1

Towards an automated malware detection approach on Android

Louison Gitzinger,
Université Rennes 1, France
louison.gitzinger@inria.fr

As the number of distinct malware increases, it becomes more
and more difficult to characterize and define precisely what
a malicious application is and thus, harder to design efficient
malware detection tools. Most of current malware detection
solutions which rely either on static or dynamic analysis requires
human efforts. In this work, we propose a novel approach to
dynamically detect malware at runtime without requiring human
intervention.

I. INTRODUCTION

As of today, the Android system reaches 88% of
smartphones market share [1]. Following this trend, the
Android application ecosystem gets bigger everyday, thanks
to an active developer community that distribute their
applications through major [2] [3] and alternative [4] online
application market places. For example, Google Play Store
holds 3.3 millions applications with a rate of more than 50
000 submissions a month.

However as for any operating system, third party
applications remain a major attack vector. This is why a
certain quantity of applications, known as malwares, are
deliberately malicious softwares built for damaging phones
and are dangerous for end users. Malwares can, for example,
gain root access on the phone, steal or encrypt user private
data or send premium SMSs.

To fight this problem and strengthen user safety, Android
actors provide many efforts. On one side, the Android’s open
source development approach allows to collaboratively locate
vulnerabilities and develop mitigations. Latest Android system
updates have been shipped with major security improvements
and restrictions to reduce the system attack surface. As
examples, Android 5 was released with a runtime permission
system, SE Linux, and a restricted access to the /proc
directory has been implemented into Android 8. On the
other hand, Android related companies set up solutions to
reduce the number of malwares available on their online
application markets. To do so, companies mix state of the
art software analysis techniques to verify each submitted
application. First, they check the application signature against
a database containing malware signatures. Then, they use
static analysis to detect potential malicious behaviors such as
unwanted information flow.

Despite the efforts to reduce the attack surface on
the Android system, various security issues are discovered
every day. The number of Android malwares explodes in
2018 [5], which confirms the recent years trend. Moreover,
studies [6] [7] show an increasing number of distinct malwares
families. This is partly because smartphones are continually

improved on all levels to provide users better services, ranging
from a wide range of connectivity options (GSM, WI-FI,
GPS, Bluetooth, NFC) to a high availability of personal
information such as contacts, messages or browsing history.
Depending their intentions, malwares adapt their behavior
to take advantage and exploit vulnerabilities of these new
services.

Moreover, we recall that Android applications run on a
particular Linux system (Android OS) and have particulriaties
that differentiate them from standard linux softwares. In
particular, the Android’s application model allows multiple
applications to easily communicate with each other. To enable
this particular feature, Android applications are built of
components able to communicate with each other, inside and
outside the application context. This global communication
system can be used to exchange information between two
application as well as to access the phone’s data storage
system. These specificities make an Android application to
behave differently than known Linux malwares, and thus
bringing new challenges in malware detection.

As the number of distinct malware increases, it becomes
more and more difficult to characterize and define precisely
what a malicious application is. This blurred vision of a
malware is preventing us from developing generalized analysis
techniques. The fact is that even in a given family, malwares
are using totally different behaviors to reach their goal.
The result is a particularly heterogeneous ecosystem which
prevents today’s tools from categorizing them as malicious
applications from the same kind.

To detect them, previous studies used a techniques based
on either static or dynamic analysis for detecting data leakage
and apk signatures to recognize a known malicious application.
The current diversity in malware applications could make these
solutions less effective.

In the industry, anti-viruses detect malwares by checking
each application against an updated collection of known
malicious applications signatures. Typically, an usual anti-
virus will scan a given application looking for portions of
code that already exists in its database. If this portion of code is
flagged as suspicious, the application will have more chance to
be categorized as malicious. However, the malware ecosystem
becomes so complex that new malwares implement known
malicious behaviors in a totally different manner making
impossible for an anti-virus to reason on the application code.

As an alternative to conventional anti-viruses, we observe
a trend in latest studies to use learning techniques with data
collected by both static and dynamic analysis [8]. Particularly,
they train a learning model by choosing a small set of features



2

such as dangerous permissions, protected api calls or data
leaks at runtime supposed to characterize any malware. These
approaches have their limitations for three reasons. First, it is
sensitive to false positives because a non negligible number of
benign applications could use a combination of these features
for a non malicious purpose. Secondly, these learning models
are made to analyze and classify an application prior to
their execution. This implies that if the model fails to detect
a malware at installation time, no mechanism will prevent
it from doing more damages at runtime. Finally, they do
not take into account the fact that malwares try to escape
these detection techniques by using a combination of more
elaborated techniques. For example, a malware that wants
to steal user contacts without asking the READ_CONTACTS
permission could ask another application that already have
this permission granted to send it the contacts via Intent
communication. In this way, any technique that does not check
both Android permissions and inter app communication will
never notice the malicious behavior. Such malware practices
must be monitored at runtime in a real environment to be
detected. To tackle this, studies such as Andrubis [9] runs
applications in a monitored virtual machine. However, The
inherent problem is that malwares become capable of detecting
that they are running within a virtual environment [10].
Moreover, these automated virtual machines fake user actions
with probabilistic inputs that may never trigger the malicious
behavior.

II. APPROACH

Our work offers an alternative to current studies by
proposing an approach which allows to detect a malicious
behavior during the application execution. To do so, we
instrument the application at installation time to tailor a
dynamic analysis that will be triggered at execution time.
When the application runs, we use a fuzzy logic to pro-actively
learn from the data in real time by the dynamic analysis.

Fig. 1: State of the art process such as Drebin

The Figure 1 schematically describes how current state of
the art solutions works in terms of malware detection. First,
an automated tool using both static and dynamic analysis is
built to extract meaningful features from a given application.
Secondly, a classifier model is built using learnings techniques
from the extracted features of a data set of malicious and
benign applications. Once trained, the model can takes the
features of any new application as input and produce a report
which gives the percentage of malwareness of the given

Fig. 2: Approach based on pro-active learning

application. It is then up to the analyst that reads the report to
take actions about the analyzed application such as choosing
whether to keep or reject the application. In all cases, the
whole process is performed before execution time. On the
contrary, Figure 2 shows our alternative approach. When the
user wants to install a new application, our tool, which is
embed on the phone, takes as input the legacy application to
generate an instrumented one that is thereafter installed on the
phone. As a result, as soon as the instrumented application is
run, meaningful data is collected to be analyzed on the fly, and
actions can be taken directly on the phone like stopping the
application process for example, in case of dynamic malware
detection.

A. Building the model

To be capable of detecting malicious behavior at runtime,
we provide a model shaped by application data collected
in real time. A naive technique would be to build this
model exhaustively by collecting all existing method call
during execution. Unfortunately, it leads to a state explosion
problem, and deteriorates application performances and thus
user experience. To circumvent this problem we leverage on
preivous studies [8] and [11] to build a custom abstract model
containing the most representative patterns of each malware
family. We develop a process that allows us to identify an
entire malware family from diagnoses made on a few of them.
We state the following hypothesis: from the data collected of
a few malware family samples, it is possible to generate an
abstract model characterizing all malwares within this family.
To this aim, we narrowed our exploration space by focusing on
a smaller part of the malware ecosytem. This approach allows
the design of tools able to analyze the distinct behaviors of
malwares within the same family.

B. Conclusion

To overcome challenges mentioned above, we provide
AndroHook, a tool that leverage both on static and dynamic



3

analysis that allows us to collect data characterizing the
intrinsics behaviors of a given application. AndroHook
performs a static analysis on a target application to collect
the data needed to customize the dynamic analysis according
to a malware family and instrument it accordingly. When run,
the instrumented application sends data to an interpreter which
perform dynamic analysis diagnose the application execution.

The AndroHook tool aims to resolve two open issues. First,
we need to build a model capable of detecting malwares
from real time application features. To reach this aim,
our strategy is to develop the toolchain that generates an
abstract model, using fuzzy-logic or deep learning inference,
capable of covering at once a set of similar malwares.
Secondly, AndroHook needs to perform an effective dynamic
analysis that maintain application performances and preserve
application code integrity. To solve this issue, we make our
tool scale by hooking native system calls in an efficient manner
in order to reduce the overhead cost to hook system primitives
at runtime.

REFERENCES

[1] S. 2018. (2018) Global mobile os market share in sales
to end users from 1st quarter 2009 to 2nd quarter 2018.
Test. [Online]. Available: https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems/

[2] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” in ACM SIGMETRICS Performance Evaluation Review, vol. 42,
no. 1. ACM, 2014, pp. 221–233.

[3] “Amazon appstore for android launches,” https://www.marketplace.
org/2011/03/22/tech/codebreaker/amazon-appstore-android-launches,
(Accessed on 09/27/2018).

[4] “Getjar - download free apps, games and themes apk,” https://www.
getjar.com/, (Accessed on 09/27/2018).

[5] S. malware forecast. (2018) Sophoslabs 2018 malware forecast. Test.
[Online]. Available: https://www.sophos.com/en-us/en-us/medialibrary/
PDFs/technical-papers/malware-forecast-2018.pdf?la=en

[6] D. J. Tan, T.-W. Chua, V. L. Thing et al., “Securing android: a survey,
taxonomy, and challenges,” ACM Computing Surveys (CSUR), vol. 47,
no. 4, p. 58, 2015.

[7] X. Jiang and Y. Zhou, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE Symposium on Security and
Privacy(SP), vol. 00, 05 2012, pp. 95–109. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/SP.2012.16

[8] D. Arp, M. Spreitzenbarth, M. HÃŒbner, H. Gascon, and K. Rieck,
“Drebin: Effective and Explainable Detection of Android
Malware in Your Pocket .” Internet Society, 2014. [Online].
Available: https://www.ndss-symposium.org/ndss2014/programme/
drebin-effective-and-explainable-detection-android-malware-your-pocket/

[9] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. Van Der Veen, and C. Platzer, “Andrubis–1,000,000 apps later: A view
on current android malware behaviors,” in Building Analysis Datasets
and Gathering Experience Returns for Security (BADGERS), 2014 Third
International Workshop on. IEEE, 2014, pp. 3–17.

[10] T. Vidas and N. Christin, “Evading android runtime analysis via
sandbox detection.” ACM Press, 2014, pp. 447–458. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2590296.2590325

[11] M. Spreitzenbarth, T. Schreck, F. Echtler, D. Arp, and J. Hoffmann,
“Mobile-Sandbox: combining static and dynamic analysis with
machine-learning techniques,” International Journal of Information
Security, vol. 14, no. 2, pp. 141–153, Apr. 2015. [Online]. Available:
https://link.springer.com/article/10.1007/s10207-014-0250-0


