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Abstract— Emerging Big Data analytics applications require
a significant amount of computational power. As the demand
for computational resources continues to grow, analytical needs
for Big Data can be satisfied with high performance computing
models. Additionally, High Performance Computing (HPC) has
evolved over the years to meet the ever-increasing demands
for processing speed. While some data-intensive applications are
intended to be executed on commodity hardware in a “scale out”
architecture, there are certain situations in which ultra-fast, high-
capacity HPC “scale up” approaches are preferred.

Current Big Data processing platforms like Hadoop and Spark
which use the Java Virtual Machine (JVM) as an execution
environment are abstracting away the architecture and low-
level properties of modern systems. This can become a potential
bottleneck in large-scale applications and prevent many system-
and network-related optimizations. Therefore, the aim of my
research is to investigate the performance liabilities of existing
large scale data processing frameworks compared to HPC and
offer system-aware and efficient solutions.

I. STATE OF THE ART

The explosive growth in the number of resources from
which data can be obtained has resulted in a surge of data
available in digital form which is mostly unstructured and
complex. Processing these huge volumes of data is both
challenging and paramount as it can help organizations to
turn hard numbers into insights that can steer decisions and
gain competitive advantages. This has led to the design and
development of many Big Data processing frameworks such
as Hadoop and Spark, which thrive to handle the various com-
plexities (e.g., velocity, variety, volume) of Big Data analytics.
As applications become more data intensive, there is also a
need for adopting different approaches to meet their compu-
tational requirements. A typical approach would be horizontal
scaling (i.e., scale out) by simply adding more nodes for
processing. Cloud computing has significantly helped with the
situation by providing cheap and flexible resources. However,
this would not be a feasible strategy for organizations who
have invested in their own local hardware and reached the
saturation point of their existing infrastructure. Additionally,
applications are becoming increasingly demanding, therefore
merely adding more machines is not going to be viable in
the long term. Another concern for this approach would be
power consumption since each node comes with its own power
supply, hence adding more resources would proportionally
increase the energy footprint.

In order to address the shortcomings of horizontal scaling,
alternative solutions which enable more efficient use of exist-
ing infrastructure (i.e., scale up) should not be neglected. High
Performance Computing (HPC) has always been associated
with applications of tremendous computational needs and
could be a viable candidate. Traditional HPC applications such
as graph processing and machine learning are becoming more
data intensive due to the larger input generated from more
powerful scientific instruments and more output data as a result
of smarter mathematical models and algorithms. Some of the
existing approaches in combining HPC and big data include
Nimbus [1] and Thrill [2] in which performance increase is
achieved through producing highly-optimized native code.

II. INTENDED APPROACH

The convergence of HPC and Big Data analytics, High
Performance Data Analytics” (HPDA) [3], is an exciting
opportunity in which they both can complement the needs
of one another. However, the composition of these paradigms
is a challenging task involving various aspects such as data
management and computing efficiency. Consequently, any
existing or new solution need to be carefully analyzed in the
context of HPDA.

As an example, current big data processing platforms such
as Hadoop and Spark are abstracting away the architecture
and low-level properties of the modern systems by using the
Java Virtual Machine (JVM) as their execution environment.
Notable features of the JVM, while deemed valuable in other
contexts, could become a potential bottleneck at the scale of
HPC applications. For instance, garbage collection is known
to increase the jitter in the behavior of applications, while
executing bytecode could incur overhead. Traditionally, in ap-
plications where performance matter (e.g., HPC), using a high
degree of abstraction like the JVM is prohibitive because it
prevents many system and network-related optimizations from
being applied. This effect is exacerbated by the emergence of
novel hardware where higher performance is achieved through
adhering to the low-level hardware design properties. Project
Tungsten in Apache Spark [4] is an example of avoiding such
abstractions by moving the data out of the garbage-collected
heap in order to apply optimizations such as cache-aware
computation and code generation to push the performance
closer to the limits of modern hardware.

The purpose of this research is two-fold. First, we analyze
the shortcomings of existing platforms and try to find remedies



Memory Policy | Description

Default This is the default behavior of Spark.
Local All memory accesses are local.
Remote All memory accesses are remote.

TABLE 1
DIFFERENT MEMORY POLICIES USED IN THE EXPERIMENTATION

by modifying the behavior of big data processing systems.
E.g., we have conducted experiments regarding how memory
architecture of modern machines affect Spark. (Section III)

Secondly, we are planning to use our experience from
the experimental results to build a novel system based on a
different paradigm that is more system-aware and closer to
how an HPC system would be designed.

III. EVALUATION PLAN

As an initial step toward analyzing the potential bottlenecks
in existing platforms, we wanted to see how the memory layout
of modern servers affect big data analytics.

Modern computer architecture is increasingly moving to-
ward turning individual machines into small-scale networks.
These systems consist of several nodes (i.e., sockets), each
containing a subset of the system’s CPU cores and a portion
of its RAM. If a core accesses memory from within the same
node, it is called a local access. Similarly, an access to a
different node is called a remote access. Remote accesses have
longer latencies than local ones, because they must traverse
one or more interconnect links. The latency of memory-access
times is hence non-uniform, and such systems are referred to
as NUMA (non-uniform memory access).

Ideally, in the absence of contention, all memory accesses
should be local as they are faster. However in case of Spark,
there is no guarantee that a thread which allocates memory
would be on the same node as the thread accessing that
memory. This would incur a longer latency by issuing a remote
memory access. Therefore, the aim of this experiment is to see
how NUMA-architectured systems affect the performance of
Spark. The experiments were conducted on the DAS-5 with up
to 4 machines. Each machine consists of two NUMA sockets,
each with 8 physical cores (16 logical cores) and 32GB of
RAM. The selected workload for this experiment is Terasort
and the input size is set to 30GB and the evaluation criteria
is the total application execution time.

In order to have access to all the cores and memory, two
Spark executors were launched on every node. Each executor
uses 16 (logical) cores and 24GB of RAM. Then, the numact!
library in Linux was used to control the CPU and memory
placement for each executor’s threads.

To understand the performance penalty of NUMA in Spark,
the experiments were ran with 3 different memory policies
shown in Table I. The experiment results are shown in Figure
1. As expected, forcing all memory accesses to be remote has
the worst performance. Compared to the default version, the
execution time is increased by 54.07% in the worst case (1
machine). More importantly, in the Local version where all
memory accesses are local, the execution time is reduced by
15.82% in the best case compared to the default version.

7 Z1 Remote
350 4 [ 3 Default
[Z2 Local
300 1
w
< 2501 .
£
E 200 4 ]
5
]
2 150
w
100 4
50 -
0 : ; ¢ f
1 2 3 4
Number of machines
Fig. 1. The effect of NUMA for terasort application in Spark

This experiment is an example of how respecting the design
properties of modern hardware is important to achieving better
performance. Specifically in case of Spark, where by default
one executor is launched on each machine, we found out that it
is more efficient on larger machines to partition the system in
such a way that there is one executor instance on each socket.

As the next step, we plan to conduct additional experiments
on emerging hardware platforms to investigate other important
aspects such as memory, compute, storage and networking.

IV. CONCLUSIONS

The experiment shown in Section III is an example of how
existing solutions need to adapt to various features of modern
hardware in order to be more efficient. Namely, NUMA-
aware scheduling can improve the performance of Spark. In
the future, we plan to conduct more experiments in order to
improve big data processing platforms as well as the JVM
in large scale applications. That would give us proper insight
into designing a novel framework that respects the underlying
features of the system for efficient big data analytics.
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