
Configuration splitting to extend the processing capabilities of
embedded reconfigurable systems

Christopher Cichiwskyj
University of Duisburg-Essen

Duisburg, Germany
christopher.cichiwskyj@uni-due.de

ABSTRACT
The Elastic node is an embedded hardware platform using an 8-bit
MCU and an low-power FPGA, allowing to create IoT applications
with more local processing power. Due to the limited amount of
resources on low-power FPGAs, very large hardware designs cannot
be instantiate, thus limiting the range of algorithms for this platform.
To circumvent this issue large designs can be split, using the FPGAs
reconfigurablity to switch between the smaller parts. This paper
outlines the open question regarding such split logic and provides
possible solutions.

1 INTRODUCTION
The Internet of Things is a rapidly growing network of everyday
objects that are extended with embedded computing devices. With
their integrated sensors and actuators they can interact with the
physical world and through the internet communicate with other
devices and services. Due to their embedded nature these devices
typically have to be battery powered and energy efficient to last
months or even years. The trend in IoT applications however is that
more complex algorithms are required. Machine learning, computer
vision, or self-organisation are only some of the concepts, that em-
bedded devices are often not capable of performing locally with
their limited resources. A solution to this is offloading these com-
plexe tasks e.g. to the cloud. Depending on the type of calculation
and application scenario this is not always viable, due to latency,
security or privacy concerns.

2 THE ELASTIC NODE
To be able to increase the local performance without requiring
larger, more energy intense processors we propose the Elastic Node.
The Elastic node [1][2] is an IoT hardware platform, designed to dy-
namically adapt its hardware capabilities according to the required
workload, thus allowing more tasks to be calculated locally. The
idea is that it only “grows” as much as is required to be able to solve
a given task, and returns back, or “shrinks”, to its low performance
state once the complex task is finished.

It is implemented with a low-power 8-bit microcontroller (MCU)
and a embedded field-programmable gate array (FPGA), a piece of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Middleware Doctoral Symposium ’18, December 10-14, 2018, Rennes, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

reconfigurable hardware capable of instantiating arbitrary digital
circuits. An application consists of multiple tasks. Simple tasks
are executed efficiently on the MCU, complex tasks that require
more processing power are offloaded to the FPGA as so called
Hardware Functions (HWF). To do so the FPGA is powered up,
reconfigured to instantiate the appropriate circuit, performs the
necessary calculations, and once finished returns to a sleep state.
Preliminary results show that the Elastic Node can perform these
tasks more energy efficiently, processing them locally, than when
offloading the same tasks through a wireless channel [2].

3 PROBLEM STATEMENT
Unlike the Harvard or Von-Neumann computing architectures an
FPGA does not use a classical computer program. Instead an FPGA
developer designs the required circuitry using Hardware Descrip-
tion Languages and synthesises them into configuration files. A
configuration file describes to the FPGA how its hardware resources
on the chip should be interconnected to form the desired circuitry.

Larger FPGAs typically have the capabilities to instantiate all
logic corresponding to a single HWF in one configuration file. Offer-
ing this functionality, however, usually requires operating system
(OS) abstraction [3][4][5]. Embedded FPGAs do not have enough
resources to instantiate such large logic and embedded MCUs often
cannot provide full OS abstractions. This limits what HWFs can
be implemented on the Elastic Node. A solution to this is to split
the larger HWF into smaller subtasks, each small enough to fit into
an embedded FPGA configuration. The HWF is then calculated by
reconfiguring the FPGA to each subtask and pass the intermediate
data between them.

The focus of this research is to determine, if it is possible to
execute such large HWFs on an embedded FPGA while remaining
more or as efficient as offloading these tasks e.g. to the cloud. Certain
key challenges need to be addressed.

Coordinating split HWFs: When certain HWFs are not self-
contained logical units, but instead have predefined internal subtask
data dependencies, their execution order is not purely defined by
the application anymore. Instead certain FPGA configurations need
to be loaded and executed in a certain order to ensure the correct
overall HWF result.

Reducing reconfiuguration overhead: Splitting HWFs into
multiple configurations means that more reconfigurations have to
be performed to achieve the same result. This means added over-
head to the overall execution time of a single HWF. The question
is whether this overhead can be reduced.

Intermediate data passing management: As FPGAs are not
capable of keeping any data internally throughout reconfigurations,
data that has to be passed between subtasks have to buffered and

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Middleware Doctoral Symposium ’18, December 10-14, 2018, Rennes, France Christopher Cichiwskyj

(a) Sequential execution of two HWFs leads to a
large number of reconfigurations

(b) Grouping subtasks using the same configura-
tion reduces the number of unnecessary reconfig-
urations

Figure 1: (a) A naive scheduling vs. (b) grouped HWF sched-
uling

managed externally. Additionally to the added memory overhead,
managing this data adds overhead to both memory and execution
time as well. Due to scarce resources, it is crucial that this manage-
ment can be done efficiently.

4 APPROACH
Scheduling split HWFs is dependent on the data dependencies
between the tasks, which can be modelled using task graphs. Sched-
uling task graphs in the general case is an NP-complete problem
[6]. However as placement of tasks onto processing units is limited
to the Elastic Node’s single FPGA, scheduling of the subtasks is
reduced to finding the correct linearisation of a given task graph.
Due to the task graphs being static, the scheduling decisions can
be done at design time.

Calling multiple HWFs requires a scheduling. A naive approach
is to queue them sequentially, as seen in fig. 1a. This schedule
requires seven reconfigurations. Each reconfiguration, however,
means significant overhead, both in time and energy consumption.
While the actual execution time of HWFs take nanoseconds [2], the
reconfiguration requires multiple milliseconds [7]. Assuming that
FPGA subtask configurations are reused across different HWFs,
or when the same HWF is called repeatedly, reconfigurations can
be reduced. Grouping subtasks, that use identical configurations,
allows reducing reconfigurations. As seen in fig. 1b grouping the
same two HWF sequences reduced the number of reconfigurations
by two. A grouping approach however needs to ensure that the
execution order dictated by the task graph is not violated.

Similar approaches using task graphs have been proposed [8][9],
however these focus on splitting the available FPGA area into multi-
ple processing units to distribute the tasks instead of reconfiguring
the complete FPGA.

A promising approach is to map the grouping problem onto DNA
sequence alignment algorithms such as [10]. Each HWF sequence
is mapped to a string, where each character represents an FPGA
configuration. The goal is to minimise the transitions between
characters when aligning both sequences.

As mentioned in section 3 the FPGA cannot store intermediate
data across reconfigurations, thus requiring the MCU to perform
the data management of such intermediate data. As memory on the
MCU is scarce any intermediate data has to be freed as soon as it
is obsolete. Doing so in a static fashion however is not possible, as

the time when to free data does not only depend on the data depen-
dency described in the task graph but also the runtime schedule of
grouping HWFs.

5 EVALUATION
Due to the remaining open questions regarding possible imple-
mentation details the evaluation is not completely defined yet. The
main criteria is whether splitting HWFs is viable with regards to
latency and energy consumption. To this regard it will be compared
to alternative approaches, such as offloading it wirelessly as well
as performing all calculation solely on MCUs with different pro-
cessing capabilities. The reconfiguration reduction heavily depends
on the similarity of the HWF sequences that are aligned. Varying
the HWFs, the similarity of sequences as well as their number will
give an insight into what types of applications benefit from this
approach. When splitting HWFs into smaller subtasks the reconfig-
uration overhead is a significant part of the overall performance.
This will answer at what point it becomesmore viable to use a larger
FPGA, regarding both latency and energy consumption, instead of
continously reconfiguring on a smaller FPGA.

6 CONCLUSION
Extending embedded devices with reconfigurable hardware has the
potential to lessen the dependence on offloading complex calcula-
tions. By answering the above mentioned questions the insights can
be used to create a middleware abstraction to provides developers
a simplified way to implement and use HWFs, as well as provide
a better understanding as how to design application on reconfig-
urable systems and what application scenarios can benefit from
this type of hardware.

REFERENCES
[1] A. Burger, C. Cichiwskyj, and G. Schiele. Elastic nodes for the internet of things: A

middleware-based approach. In 2017 IEEE International Conference on Autonomic
Computing (ICAC), pages 73–74, July 2017.

[2] A. Burger and G. Schiele. Demo abstract: Deep learning on an elastic node for the
internet of things. In 2017 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), Mar 2018.

[3] M. D. Santambrogio, V. Rana, I. Beretta, and D. Sciuto. Operating system runtime
management of partially dynamically reconfigurable embedded systems. In 2010
8th IEEE Workshop on Embedded Systems for Real-Time Multimedia, pages 1–10,
Oct 2010.

[4] A. Agne, M. Happe, A. Keller, E. Lübbers, B. Plattner, M. Platzner, and C. Plessl.
Reconos: An operating system approach for reconfigurable computing. IEEE
Micro, 34(1):60–71, Jan 2014.

[5] X. S. Le, J. L. Lann, L. Lagadec, L. Fabresse, N. Bouraqadi, and J. Laval. Cardin:
An agile environment for edge computing on reconfigurable sensor networks.
In 2016 International Conference on Computational Science and Computational
Intelligence (CSCI), pages 168–173, Dec 2016.

[6] Michael R Garey and David S Johnson. Computers and intractability: A guide to
the theory of np-completeness. Computers and Intractability, 340, 1979.

[7] Khurram Shahzad and Bengt Oelmann. Investigating energy consumption of
an sram-based fpga for duty-cycle applications. In International Conference on
Parallel Computing-ParCo 2013, 10-13 Sept, Munich, pages 548–559, 2014.

[8] Javier Resano, Daniel Mozos, and Francky Catthoor. A hybrid prefetch scheduling
heuristic to minimize at run-time the reconfiguration overhead of dynamically
reconfigurable hardware. In Proceedings of the Conference on Design, Automation
and Test in Europe - Volume 1, DATE ’05, pages 106–111, 2005.

[9] Juan Antonio Clemente, Javier Resano, Carlos González, and Daniel Mozos. A
hardware implementation of a run-time scheduler for reconfigurable systems.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(7):1263–1276,
2011.

[10] Saul B. Needleman and Christian D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal of
molecular biology, 48(3):443–453, 1970.

	Abstract
	1 Introduction
	2 The Elastic Node
	3 Problem Statement
	4 Approach
	5 Evaluation
	6 Conclusion
	References

