
SAGP: A Design of Swap Aware JVM GC Policy
Qichen Chen

Seoul National University
Seoul, Korea

charliecqc@dcslab.snu.ac.kr

ABSTRACT
JVM based Applications usually suffers a severe suspend from the
“Stop-The-World” pauses during Garbage Collection(GC). The sus-
pend time could even be much longer when some of the GC targets
are systematically swapped out to a permanent storage device.
Additionally, we discovered that the default Parallel-Compact GC
policy shifts contents that are not GC targets to reduce segmenta-
tions, which make the situation worse if these contents have been
already swapped out to slow devices such as HDD. We present
a new garbage collect policy that can recognize the swapped out
contents and will remove them from the shifting targets. From our
demonstrative experiment, the new policy can theoretically reduce
the latency of collecting 10 GiB contents from 671s to 190s.

KEYWORDS
Java, JVM, Garbage Collection, Swap System
ACM Reference Format:
Qichen Chen. 2018. SAGP: A Design of Swap Aware JVM GC Policy. In
Proceedings of ACMMiddleware conference (Middleware’18). ACM, New York,
NY, USA, Article 4, 3 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Data-intensiveworkload processing platforms such as Spark,MapRe-
duce are widely used as the big data era comes. In these platforms,
Data is distributed to each node, processed there and aggregated
to the client. Considering to the efficiency, each node should pro-
vide an acceptable performance while processing as much data as
possible.

Given the popularity and powerfulness of Java, most of these plat-
forms are constructed based on JVM, which manages a heap space
to store data objects. GC (Garbage Collection) [1] frequently occurs
on the heap space to recycle the unused objects, while JVM could be
stopped during the GC, which introduce a "Stop The World" pause
to the client. The STW problem will become much more serious
when part of the GC targets is swapped out to the hard disk, since
during the GC, those targets should be swap in to memory again
and the slow disk I/O latency will be the bottleneck. a STW pause
might be fatal to the distributed data processing platform, thus
Some tunning guides of JVM based distributed systems[5] suggest
to avoid system swap due to its high cost. In addition, the default
full GC policy of OpenJDK 8: parallel compact collector[?], will

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Middleware’18, December 2018, Rennes, France
© 2016 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

slide the Non-GC target to eliminate internal heap segmentation
thus constantly moving data from disk to memory. Suspending sys-
tem swap might be a good solution to solve the performance issue,
however, preventing swap also means limit the data size that can
be processed in one node into the node’s DRAM capacity, which
causes introducing more processing nodes and increase the total
cost.

To handle this issue, previous studies [8] proposed a way to use
huge address space for JVM that choose other node’s emptymemory
as its swap space. MatthewHertz et al [7] proposed the solution that
bookmarking the evicted page and keep them untouched during gc
procedure, this function is supported bymodifying the Linux kernel,
However kernel modification is usually difficult and easy to affect
other applications. besides, Zhenyun Zhuang et[9] al proposed an
idea that using THP to reduce system memory allocation pressure
for removing the GC overhead.

In our research, we’re going to present a swap aware JVM GC
policy with two main schemes to improve the GC performance as
follows:(1) we use a reference count to track every object access,
then during the summary phase of parallel compact procedure, we
remove the regions that with small access count from shifting target,
in case they are out of the memory with high probability.(2) We read
linux pagemap[3] info to identify whether each page that belongs
to accessed object is swapped out or not, if a page is swapped out,
then we take it into consideration during the summary phase.

2 DESIGN AND IMPLEMENTATION
Our newly designed GC policy is based on the parallel compacting
policy. There are three phases in the policy.

First phase is the marking phase, each generation is directly
reachable from the application code is divided among garbage col-
lection as live, the data for the region it is in is updated with infor-
mation about the size and location of the object.

Second, the summary phase operates on regions. From the pre-
vious collections, it is probably that there are some portions in the
left side contains most of the live object and the left dead objects
in those portions are not worth to compact them. As a result, it
firstly computes the density of each generation, starting with the
most left region, moving to a certain point where recovering the
regions right to the point are worth of the compacting cost. In this
case, the point is called as the dense prefix, no object that in the left
part of the dense prefix will be compact. Then the summary phase
recalculates new location of each region that need to be shifted

Lastly, in the compaction phase, the garbage collection threads
use the result of summary phase to identify regions need to be filled,
and copy data into the region independently.

From the details of the parallel compact policy, it is clear that
besides the liveness of object, the system level page swapness has
not been taken into consideration by JVM level GC policy. To see

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

Middleware’18, December 2018, Rennes, France Qichen Chen

Figure 1: evaluation on swap impaction

Figure 2: Evaluation result

the impact on the GC performance when portion of the heap is out
of memory, we designed the experiment as follows:

2.1 Evaluation Design for verifying swap
impaction

We performed all measurements on a 2.1 GHz Intel Xeon E5 linux
machine with 64 GB of RAM and 60 GB of local swap space. To
make sure swap happens, we fix the JVM max heap size to 115 GB,
which is much larger than the RAM size. To observe the influence
to GC performance by the swapped objects, we designed a simple
program. in this program, we firstly allocate 70 objects, each of
them is 1 GB, sequentially, then we keep accessing 10 of them in
order to bring the swapped object back to the memory, afterwards
we mark 20 of the allocated objects as unreachable by assigning
NULL to their reference. We doing so is for creating recycle targets
for the upcoming GC. At last we continue to allocate new object,
as the old generation is full now, a full GC will be triggered and we
measure the GC latency as our evaluation metrics.

Figure 2 shows us the 5 scenarios we have designed, the number
there represents the object index, while the "NULL" shows the
corresponding object is going to become unreachable. Each of the
scenarios depicts the object distribution priors to the full GC starts.

Figure 3 shows the GC time and swapped in size during GC
of each case. From Figure 3 we can tell that the case 1-3 takes
much longer time due to its recycling target is swapped out or
for compacting the remaining part, extra data swap in occurs and
consumes much time. On the other hand, neither the compacting
nor the recycling target is swapped out, which make these 2 cases
the fastest ones of all scenarios.

Figure 3: SVD++ Page fault count and memory access count

2.2 Swap Aware GC Policy
From the last section, we can draw a conclusion that the existed
parallel compact policy is not friendly to the scenario where part of
the recycle target or the compacting target is out of the memory. To
solve the problem, we are going to propose 2 schemes, which can
avoid swapped out pages being involved into region compaction.

The first solution we are going to take is using a reference count
to identify the hotness of each object. Since the Linux Swap system
using LRU list to manage pages, objects with large access count will
be resident in RAM with high possibility. In opposite, recently less
accessed objects are most likely swapped out to disk. Currently, we
have already analyzed how to get the reference variable to certain
heap object from the local variable table. The future work is adding
reference count through the reference variable to finally identify
objects’ hotness.

The second solution is using linux pagemap to identify each
page’s swappness during summary phase. As we mentioned above,
at the beginning of summary phases, scanning on all regions is
executed. We implant the pagemap read for region’s virtual address
into the region scan process, then we can get the number of the
pages that are swapped out in each region. Finally, we employ the
information when doing dense prefix computation, and get the
most appropriate result considering the amount and location of
swapped objects.

2.3 Evaluation Plan
Our Plan of evaluation is as follows: We will use workloads that
meet the following requirements to validate the performance of the
two solutions described in the previous section. (1)High memory
intensity (2)High locality

One of the examples is pseudo-JBB[4], which is an SPEC bench-
mark for Java, and another candidate is JCheck[2], which runs
hashtable operations. In addition, the graph computation and ma-
chine learning algorithms of Sparkbench[6] could be selected as out
target workload. We are going to use these benchmarks to evaluate
our proposed design with those running on original OpenJDK 8
with the parallel compaction GC policy.

So far, we have already completed a baseline experiment on
some of the workloads in Sparkbench. Evaluation metrics include
memory usage and page fault,. From Figure 3, We could know
that SVDPlusPlus has an access locality because it has fewer page
faults comparing to its long execution time and high memory usage.
Therefore, we plan to evaluate the solutions with SVDPlusPlus later
on. Also, we have completed the measurement of swap overhead on
SVDPlusPlus. The final goal is to optimize GC policy to converge
on performance when there is no swapping.

SAGP: A Design of Swap Aware JVM GC Policy Middleware’18, December 2018, Rennes, France

3 CONCLUSIONS
In this paper, we clarify the problem that current JVM GC policies
are not aware of linux system level swap. We analyzed the problem
through simple validate program and found that in the parallel
compact policy, swapped out objects may be involved to become
the recycling targets or compacting targets. we proposed 2 solutions
aiming to solve this problem, we also proposed a detailed evaluation
plan to validate our solutions in the future.

4 ACKNOWLEDGMENT
I am grateful to HyoJeong Lee as she made a huge contribution
to this job. I am also thanks to YongSeok Son for his contribu-
tion. This work was supported by the National Research Founda-
tion of Korea(NRF) grant funded by the Korea government(MSIT)
(No.2018R1C1B5085640) and (No.2015M3C4A7065646)

REFERENCES
[1] [n. d.]. Java Grabage Collection basics. http://www.oracle.com/webfolder/

technetwork/tutorials/obe/java/gc01/index.html
[2] [n. d.]. JCheck. http://openjdk.java.net/projects/code-tools/jcheck/.
[3] [n. d.]. pagemap, from the userspace perspective. https://www.kernel.org/doc/

Documentation/vm/pagemap.txt
[4] [n. d.]. pseudJBB. http://www.spec.org/jbb2005/.
[5] Srigurunath Chakravarthi. 2010. Tuning Hadoop for Performance.

hadoopsummit2010
[6] Min et al Li. 2017. SparkBench: a spark benchmarking suite characterizing large-scale

in-memory data analytics. Cluster Computing 20.3 (2017): 2575-2589.
[7] Emery D.Berger Matthew Herz, Yi Feng. 2005. Garbage CollectionWithout Paging.

PLDI\T1\textquoteright05,12\T1\textendash15June2005,Chicago,Illinois,USA
[8] Ronald Veldema. 2007. Supporting Huge Address Spaces in a Virtual Ma-

chine for Java on a Cluster. LanguagesandCompilersforParallelComputing.
SpringerBerlinHeidelberg,2007:187-201.

[9] Haricharan Ramachandra Badri Sridharan Zhenyun Zhuang, Guong Tran.
2016. OS-Caused Large JVM Pauses: Investigations and Solutions.
JournalofSoftwareVolume11,Number10,October2016

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
hadoop summit 2010
PLDI\T1\textquoteright 05, 12\T1\textendash 15 June 2005, Chicago, Illinois, USA
Languages and Compilers for Parallel Computing. Springer Berlin Heidelberg, 2007:187-201.
Languages and Compilers for Parallel Computing. Springer Berlin Heidelberg, 2007:187-201.
Journal of Software Volume 11, Number 10, October 2016

	Abstract
	1 Introduction
	2 Design and Implementation
	2.1 Evaluation Design for verifying swap impaction
	2.2 Swap Aware GC Policy
	2.3 Evaluation Plan

	3 Conclusions
	4 Acknowledgment
	References

