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Abstract
Mobile Participatory Sensing systems provide useful data gath-
ered from mobile devices that would otherwise require expensive
deployments of sensor networks. This type of data can identify
participants and infer important private information. In this Ph.D.
thesis, we investigate a decentralized approach assisted by Trusted
Execution Environment enabled hardware to enforce the control of
the participants on the usage of the collected personal data series.
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1 Introduction
Mobile Participatory Sensing (MPS) systems collect spatio-temporal
data and other sensor readings which can vary from environmental
and health data, to any other type of data that mobile phones can
collect. This data, typically, has the form of continuous time series
and is sensitive since it can be used to identify participants and infer
important information about their interests, location or medical
conditions. MPS systems are distributed by nature and yet in most
applications, participants must report the data they have collected
to a server and thus “re-centralize” it. This approach assumes, by
construction, that individuals do not question the honesty of the
hosting company nor its capacity to defeat severe attacks, since
centralization creates in essence a massive honeypot.

In recent studies, authors implement Privacy Enhancing Tech-
niques (PET) such as k-anonymity and differential privacy to pro-
tect user privacy. The main idea is that a trusted entity in the
architecture, will be responsible for anonymizing user data. In the
approaches of [2] and [10], the authors use a central server while in
[8], the authors let the mobile phone service provider handle this.
In [3], participants are called to exchange their measurements with
each other before reporting them back to the server. This way, the
link between them and their data is broken. This needs to be cou-
pled with other PETs as the link can be reestablished by analyzing a
participant’s history and combining it with external knowledge. For
a survey of recent studies in centralized MPS we refer the reader to
[1]. Such centralized approaches fail to provide guarantees that user
data will not be misused either intentionally, by negligence or in
case of a successful attack against the server. Trusting third parties
to provide confidentiality and integrity preserving computations is
not a convincing solution.
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2 Problem Statement
A privacy aware architecture for MPS systems should enforce that
participants have control over their data, while enabling rich and
secure computations over data from multiple participants. More
specifically, it should ensure confidentiality of user data and of the
intermediate results of the computations. Additionally, it should
provide integrity guarantees that user data is used only for purposes
that the participant has explicitly consented to, and that the results
of these computations are correct. From the point of view of the
application, it should provide guarantees that participants will
provide real untampered data. Functional requirements include
continuous computations over time series, scalability in terms of
both the number of participants, and the amount of data.

Trusted Execution Environments (TEEs) are an emerging tech-
nology which provides users with confidentiality and integrity
guarantees that their data will remain protected. Through their
attestation mechanisms they can ensure users that the result of a
computation is the product of the given function. However, sim-
ply using a TEE enabled server which collects all user data is not
possible due to their limitations in terms of available memory. Fur-
thermore, TEEs themselves can suffer from side channel attacks
[12] which can lead to the leakage of private data.

Keeping data decentralized is a step on the right direction but
is not sufficient. Important functions of MPS systems such as task
assignment which is the process of selecting suitable participants
to collect data, and rich computations on this collected data, require
re-centralization. The problem then lies in providing a completely
decentralized framework for MPS systems that enables the function-
ality of typical centralized MPS systems while respecting the above
requirements. The main challenge when designing this framework
is achieving efficient and secure distributed computations. TEEs
can provide local integrity guarantees but the integrity of the global
computation is not guaranteed and needs to be verified.

3 Related work
Distributed computations lie at the core of the problem. Existing
techniques which enable privacy preserving distributed compu-
tations such as Secure Multiparty Computations (SMC) [13] and
gossip protocols [5] have certain drawbacks that prevent their use.
More specifically, the former does not scale well with the number of
parties, while the latter cannot be used for general computations. In
[7], the authors use a DHT and a blockchain to build a decentralized
personal data management system which ensures users can keep
control of their data. Data processing however, is not considered. In
[9], the authors propose a decentralized architecture for real time
traffic statistics. They propose protocols in which participants can
collaborate to simulate the functionality of a trusted third party.
Their approach provides some interesting ideas specific to traffic
analysis. Whether these can be applied to other usages needs to be
investigated. In [6] the authors propose a framework for running
MapReduce computations in the cloud. They use trusted Intel SGX
enabled processors which handle parts of the computations. In their
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Figure 1. A high level overview of our proposal.
proposal though, they do not consider side channel attacks. Addi-
tionally, MapReduce is not optimized for stream processing which
is the case for many MPS tasks. A study, closely related to ours,
is [4] where the authors propose an architecture for MPS systems
where users hold devices equipped with secure hardware with the
goal of protecting the location privacy of participants. Moreover,
they propose protocols for efficient data aggregation. However, task
assignment is not considered, and location is not the only privacy
sensitive information that participants provide in such systems.

While there are studies concerning decentralized computations,
specific functions of an MPS system are not addressed. To the best
of our knowledge, there does not exist a complete architecture for
general decentralized privacy aware MPS systems.

4 Our approach
In Figure 1 we present a high level architecture of our proposed
framework. It is comprised of a set of users, a public database
and a cloud of devices enabled with TEEs. The tasking process
can be divided into three sub-processes, the task definition, the
task verification and the task distribution. A task will contain two
pieces of information. The requirements in terms of sensors, time,
locations of interest number of participants etc. and a function to be
computed over the collected data. Once the tasking entity defines
a task, a probabilistic selection mechanism will select a number
of users (verifiers) from the pool of available users who will test
the task for well-known threats. This mechanism will use the TEE
cloud to provide the required integrity guarantees and ensure that
malicious users are excluded. A different selection process selects
the assignors who will assign the verified tasks to the available
users based on their compatibility with the task description.

These two processes will assume the role that a central server
would have in a centralized architecture. The results of these pro-
cesses will be published on the public database in a way that will
enable the users to verify their integrity without impeding the
other user’s privacy. The public database basically works as a bul-
letin board, where information about the system is published. A
distributed process executed by the users to verify that this public
database has not been tampered with will also need to be developed.

After the task has been distributed to the participants, they will
then perform the required measurements specified in the task and
save the collected data on their devices. With the assistance of
a set of TEE enabled devices and cryptographic techniques, the
participants will collaborate to execute the defined function. The
result can then be published to the public database, or in case of
private tasks, the result can be sent back to the tasker.

This approach allows users to keep data on their devices. When
that data is requested, a verification process will ensure that data
will only be used for specified purposes. The architecture avoids

the re-centralization of data by keeping all processes distributed.
However, there are several research questions that remain unan-
swered. How will the two selection mechanisms work? How will
the task verification and assignment be performed? Finally, how
will our system use TEEs to perform distributed computations?

5 Evaluation plan
The proposed framework will be evaluated both in terms of privacy,
as well as its efficiency in terms of computing performance. More
specifically, in terms of privacy evaluation we can measure the data
leakage in case of a successful attack during the computations phase.
That is, the amount of private data exposed to a user who should
not have access to it compared to the total amount of data involved
in the computation. With this we can measure the cost-to-benefit
ratio of a successful attack. The performance of the task verification
scheme based on the number of malicious users involved, and their
effect on the outcome of the process. To measure the efficiency
of the framework we will have to evaluate the performance of
the task assignment compared to an offline optimal protocol, and
the efficiency of the computations based on the amount of data.
The various protocols can also be compared with systems (both
centralized and distributed) from the state of the art. Possible use
cases that could be tested on the framework include the collection
of personal health data (e.g. steps walked, average resting heart
rate etc.) and its comparison with the rest of the participants, or
the generation of a noise map with data collected by Ambiciti [11].

6 Conclusion
The decentralized approach we present, can potentially provide
users with guarantees that their data will not be misused and will
remain private. The aim of this Ph.D. thesis is to examine if a fully
decentralized privacy aware solution for MPS systems is a viable
solution or if certain compromises are necessary in order to achieve
acceptable privacy while maintaining important functionalities.
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